pandas.core.resample.Resampler.backfill#

Resampler.backfill(limit=None)[source]#

Backward fill the new missing values in the resampled data.

In statistics, imputation is the process of replacing missing data with substituted values [1]. When resampling data, missing values may appear (e.g., when the resampling frequency is higher than the original frequency). The backward fill will replace NaN values that appeared in the resampled data with the next value in the original sequence. Missing values that existed in the original data will not be modified.

Parameters
limitint, optional

Limit of how many values to fill.

Returns
Series, DataFrame

An upsampled Series or DataFrame with backward filled NaN values.

See also

bfill

Alias of backfill.

fillna

Fill NaN values using the specified method, which can be ‘backfill’.

nearest

Fill NaN values with nearest neighbor starting from center.

ffill

Forward fill NaN values.

Series.fillna

Fill NaN values in the Series using the specified method, which can be ‘backfill’.

DataFrame.fillna

Fill NaN values in the DataFrame using the specified method, which can be ‘backfill’.

References

1

https://en.wikipedia.org/wiki/Imputation_(statistics)

Examples

Resampling a Series:

>>> s = pd.Series([1, 2, 3],
...               index=pd.date_range('20180101', periods=3, freq='h'))
>>> s
2018-01-01 00:00:00    1
2018-01-01 01:00:00    2
2018-01-01 02:00:00    3
Freq: H, dtype: int64
>>> s.resample('30min').bfill()
2018-01-01 00:00:00    1
2018-01-01 00:30:00    2
2018-01-01 01:00:00    2
2018-01-01 01:30:00    3
2018-01-01 02:00:00    3
Freq: 30T, dtype: int64
>>> s.resample('15min').bfill(limit=2)
2018-01-01 00:00:00    1.0
2018-01-01 00:15:00    NaN
2018-01-01 00:30:00    2.0
2018-01-01 00:45:00    2.0
2018-01-01 01:00:00    2.0
2018-01-01 01:15:00    NaN
2018-01-01 01:30:00    3.0
2018-01-01 01:45:00    3.0
2018-01-01 02:00:00    3.0
Freq: 15T, dtype: float64

Resampling a DataFrame that has missing values:

>>> df = pd.DataFrame({'a': [2, np.nan, 6], 'b': [1, 3, 5]},
...                   index=pd.date_range('20180101', periods=3,
...                                       freq='h'))
>>> df
                       a  b
2018-01-01 00:00:00  2.0  1
2018-01-01 01:00:00  NaN  3
2018-01-01 02:00:00  6.0  5
>>> df.resample('30min').bfill()
                       a  b
2018-01-01 00:00:00  2.0  1
2018-01-01 00:30:00  NaN  3
2018-01-01 01:00:00  NaN  3
2018-01-01 01:30:00  6.0  5
2018-01-01 02:00:00  6.0  5
>>> df.resample('15min').bfill(limit=2)
                       a    b
2018-01-01 00:00:00  2.0  1.0
2018-01-01 00:15:00  NaN  NaN
2018-01-01 00:30:00  NaN  3.0
2018-01-01 00:45:00  NaN  3.0
2018-01-01 01:00:00  NaN  3.0
2018-01-01 01:15:00  NaN  NaN
2018-01-01 01:30:00  6.0  5.0
2018-01-01 01:45:00  6.0  5.0
2018-01-01 02:00:00  6.0  5.0