pandas.read_xml#
- pandas.read_xml(path_or_buffer, xpath='./*', namespaces=None, elems_only=False, attrs_only=False, names=None, encoding='utf-8', parser='lxml', stylesheet=None, compression='infer', storage_options=None)[source]#
- Read XML document into a - DataFrameobject.- New in version 1.3.0. - Parameters
- path_or_bufferstr, path object, or file-like object
- String, path object (implementing - os.PathLike[str]), or file-like object implementing a- read()function. The string can be any valid XML string or a path. The string can further be a URL. Valid URL schemes include http, ftp, s3, and file.
- xpathstr, optional, default ‘./*’
- The XPath to parse required set of nodes for migration to DataFrame. XPath should return a collection of elements and not a single element. Note: The - etreeparser supports limited XPath expressions. For more complex XPath, use- lxmlwhich requires installation.
- namespacesdict, optional
- The namespaces defined in XML document as dicts with key being namespace prefix and value the URI. There is no need to include all namespaces in XML, only the ones used in - xpathexpression. Note: if XML document uses default namespace denoted as xmlns=’<URI>’ without a prefix, you must assign any temporary namespace prefix such as ‘doc’ to the URI in order to parse underlying nodes and/or attributes. For example,- namespaces = {"doc": "https://example.com"} 
- elems_onlybool, optional, default False
- Parse only the child elements at the specified - xpath. By default, all child elements and non-empty text nodes are returned.
- attrs_onlybool, optional, default False
- Parse only the attributes at the specified - xpath. By default, all attributes are returned.
- nameslist-like, optional
- Column names for DataFrame of parsed XML data. Use this parameter to rename original element names and distinguish same named elements. 
- encodingstr, optional, default ‘utf-8’
- Encoding of XML document. 
- parser{‘lxml’,’etree’}, default ‘lxml’
- Parser module to use for retrieval of data. Only ‘lxml’ and ‘etree’ are supported. With ‘lxml’ more complex XPath searches and ability to use XSLT stylesheet are supported. 
- stylesheetstr, path object or file-like object
- A URL, file-like object, or a raw string containing an XSLT script. This stylesheet should flatten complex, deeply nested XML documents for easier parsing. To use this feature you must have - lxmlmodule installed and specify ‘lxml’ as- parser. The- xpathmust reference nodes of transformed XML document generated after XSLT transformation and not the original XML document. Only XSLT 1.0 scripts and not later versions is currently supported.
- compressionstr or dict, default ‘infer’
- For on-the-fly decompression of on-disk data. If ‘infer’ and ‘path_or_buffer’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, or ‘.zst’ (otherwise no compression). If using ‘zip’, the ZIP file must contain only one data file to be read in. Set to - Nonefor no decompression. Can also be a dict with key- 'method'set to one of {- 'zip',- 'gzip',- 'bz2',- 'zstd'} and other key-value pairs are forwarded to- zipfile.ZipFile,- gzip.GzipFile,- bz2.BZ2File, or- zstandard.ZstdDecompressor, respectively. As an example, the following could be passed for Zstandard decompression using a custom compression dictionary:- compression={'method': 'zstd', 'dict_data': my_compression_dict}.- Changed in version 1.4.0: Zstandard support. 
- storage_optionsdict, optional
- Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to - urllibas header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to- fsspec. Please see- fsspecand- urllibfor more details.
 
- Returns
- df
- A DataFrame. 
 
 - See also - Notes - This method is best designed to import shallow XML documents in following format which is the ideal fit for the two-dimensions of a - DataFrame(row by column).- <root> <row> <column1>data</column1> <column2>data</column2> <column3>data</column3> ... </row> <row> ... </row> ... </root> - As a file format, XML documents can be designed any way including layout of elements and attributes as long as it conforms to W3C specifications. Therefore, this method is a convenience handler for a specific flatter design and not all possible XML structures. - However, for more complex XML documents, - stylesheetallows you to temporarily redesign original document with XSLT (a special purpose language) for a flatter version for migration to a DataFrame.- This function will always return a single - DataFrameor raise exceptions due to issues with XML document,- xpath, or other parameters.- Examples - >>> xml = '''<?xml version='1.0' encoding='utf-8'?> ... <data xmlns="http://example.com"> ... <row> ... <shape>square</shape> ... <degrees>360</degrees> ... <sides>4.0</sides> ... </row> ... <row> ... <shape>circle</shape> ... <degrees>360</degrees> ... <sides/> ... </row> ... <row> ... <shape>triangle</shape> ... <degrees>180</degrees> ... <sides>3.0</sides> ... </row> ... </data>''' - >>> df = pd.read_xml(xml) >>> df shape degrees sides 0 square 360 4.0 1 circle 360 NaN 2 triangle 180 3.0 - >>> xml = '''<?xml version='1.0' encoding='utf-8'?> ... <data> ... <row shape="square" degrees="360" sides="4.0"/> ... <row shape="circle" degrees="360"/> ... <row shape="triangle" degrees="180" sides="3.0"/> ... </data>''' - >>> df = pd.read_xml(xml, xpath=".//row") >>> df shape degrees sides 0 square 360 4.0 1 circle 360 NaN 2 triangle 180 3.0 - >>> xml = '''<?xml version='1.0' encoding='utf-8'?> ... <doc:data xmlns:doc="https://example.com"> ... <doc:row> ... <doc:shape>square</doc:shape> ... <doc:degrees>360</doc:degrees> ... <doc:sides>4.0</doc:sides> ... </doc:row> ... <doc:row> ... <doc:shape>circle</doc:shape> ... <doc:degrees>360</doc:degrees> ... <doc:sides/> ... </doc:row> ... <doc:row> ... <doc:shape>triangle</doc:shape> ... <doc:degrees>180</doc:degrees> ... <doc:sides>3.0</doc:sides> ... </doc:row> ... </doc:data>''' - >>> df = pd.read_xml(xml, ... xpath="//doc:row", ... namespaces={"doc": "https://example.com"}) >>> df shape degrees sides 0 square 360 4.0 1 circle 360 NaN 2 triangle 180 3.0