Options and settings#
Overview#
pandas has an options API configure and customize global behavior related to
DataFrame
display, data behavior and more.
Options have a full “dotted-style”, case-insensitive name (e.g. display.max_rows
).
You can get/set options directly as attributes of the top-level options
attribute:
In [1]: import pandas as pd
In [2]: pd.options.display.max_rows
Out[2]: 15
In [3]: pd.options.display.max_rows = 999
In [4]: pd.options.display.max_rows
Out[4]: 999
The API is composed of 5 relevant functions, available directly from the pandas
namespace:
get_option()
/set_option()
- get/set the value of a single option.reset_option()
- reset one or more options to their default value.describe_option()
- print the descriptions of one or more options.option_context()
- execute a codeblock with a set of options that revert to prior settings after execution.
Note
Developers can check out pandas/core/config_init.py for more information.
All of the functions above accept a regexp pattern (re.search
style) as an argument,
to match an unambiguous substring:
In [5]: pd.get_option("display.chop_threshold")
In [6]: pd.set_option("display.chop_threshold", 2)
In [7]: pd.get_option("display.chop_threshold")
Out[7]: 2
In [8]: pd.set_option("chop", 4)
In [9]: pd.get_option("display.chop_threshold")
Out[9]: 4
The following will not work because it matches multiple option names, e.g.
display.max_colwidth
, display.max_rows
, display.max_columns
:
In [10]: pd.get_option("max")
---------------------------------------------------------------------------
OptionError Traceback (most recent call last)
Input In [10], in <cell line: 1>()
----> 1 pd.get_option("max")
File /pandas/pandas/_config/config.py:256, in CallableDynamicDoc.__call__(self, *args, **kwds)
255 def __call__(self, *args, **kwds):
--> 256 return self.__func__(*args, **kwds)
File /pandas/pandas/_config/config.py:128, in _get_option(pat, silent)
127 def _get_option(pat: str, silent: bool = False):
--> 128 key = _get_single_key(pat, silent)
130 # walk the nested dict
131 root, k = _get_root(key)
File /pandas/pandas/_config/config.py:116, in _get_single_key(pat, silent)
114 raise OptionError(f"No such keys(s): {repr(pat)}")
115 if len(keys) > 1:
--> 116 raise OptionError("Pattern matched multiple keys")
117 key = keys[0]
119 if not silent:
OptionError: 'Pattern matched multiple keys'
Warning
Using this form of shorthand may cause your code to break if new options with similar names are added in future versions.
Available options#
You can get a list of available options and their descriptions with describe_option()
. When called
with no argument describe_option()
will print out the descriptions for all available options.
In [11]: pd.describe_option()
compute.use_bottleneck : bool
Use the bottleneck library to accelerate if it is installed,
the default is True
Valid values: False,True
[default: True] [currently: True]
compute.use_numba : bool
Use the numba engine option for select operations if it is installed,
the default is False
Valid values: False,True
[default: False] [currently: False]
compute.use_numexpr : bool
Use the numexpr library to accelerate computation if it is installed,
the default is True
Valid values: False,True
[default: True] [currently: True]
display.chop_threshold : float or None
if set to a float value, all float values smaller then the given threshold
will be displayed as exactly 0 by repr and friends.
[default: None] [currently: None]
display.colheader_justify : 'left'/'right'
Controls the justification of column headers. used by DataFrameFormatter.
[default: right] [currently: right]
display.column_space No description available.
[default: 12] [currently: 12]
display.date_dayfirst : boolean
When True, prints and parses dates with the day first, eg 20/01/2005
[default: False] [currently: False]
display.date_yearfirst : boolean
When True, prints and parses dates with the year first, eg 2005/01/20
[default: False] [currently: False]
display.encoding : str/unicode
Defaults to the detected encoding of the console.
Specifies the encoding to be used for strings returned by to_string,
these are generally strings meant to be displayed on the console.
[default: utf-8] [currently: utf8]
display.expand_frame_repr : boolean
Whether to print out the full DataFrame repr for wide DataFrames across
multiple lines, `max_columns` is still respected, but the output will
wrap-around across multiple "pages" if its width exceeds `display.width`.
[default: True] [currently: True]
display.float_format : callable
The callable should accept a floating point number and return
a string with the desired format of the number. This is used
in some places like SeriesFormatter.
See formats.format.EngFormatter for an example.
[default: None] [currently: None]
display.html.border : int
A ``border=value`` attribute is inserted in the ``<table>`` tag
for the DataFrame HTML repr.
[default: 1] [currently: 1]
display.html.table_schema : boolean
Whether to publish a Table Schema representation for frontends
that support it.
(default: False)
[default: False] [currently: False]
display.html.use_mathjax : boolean
When True, Jupyter notebook will process table contents using MathJax,
rendering mathematical expressions enclosed by the dollar symbol.
(default: True)
[default: True] [currently: True]
display.large_repr : 'truncate'/'info'
For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can
show a truncated table (the default from 0.13), or switch to the view from
df.info() (the behaviour in earlier versions of pandas).
[default: truncate] [currently: truncate]
display.latex.escape : bool
This specifies if the to_latex method of a Dataframe uses escapes special
characters.
Valid values: False,True
[default: True] [currently: True]
display.latex.longtable :bool
This specifies if the to_latex method of a Dataframe uses the longtable
format.
Valid values: False,True
[default: False] [currently: False]
display.latex.multicolumn : bool
This specifies if the to_latex method of a Dataframe uses multicolumns
to pretty-print MultiIndex columns.
Valid values: False,True
[default: True] [currently: True]
display.latex.multicolumn_format : bool
This specifies if the to_latex method of a Dataframe uses multicolumns
to pretty-print MultiIndex columns.
Valid values: False,True
[default: l] [currently: l]
display.latex.multirow : bool
This specifies if the to_latex method of a Dataframe uses multirows
to pretty-print MultiIndex rows.
Valid values: False,True
[default: False] [currently: False]
display.latex.repr : boolean
Whether to produce a latex DataFrame representation for jupyter
environments that support it.
(default: False)
[default: False] [currently: False]
display.max_categories : int
This sets the maximum number of categories pandas should output when
printing out a `Categorical` or a Series of dtype "category".
[default: 8] [currently: 8]
display.max_columns : int
If max_cols is exceeded, switch to truncate view. Depending on
`large_repr`, objects are either centrally truncated or printed as
a summary view. 'None' value means unlimited.
In case python/IPython is running in a terminal and `large_repr`
equals 'truncate' this can be set to 0 and pandas will auto-detect
the width of the terminal and print a truncated object which fits
the screen width. The IPython notebook, IPython qtconsole, or IDLE
do not run in a terminal and hence it is not possible to do
correct auto-detection.
[default: 0] [currently: 0]
display.max_colwidth : int or None
The maximum width in characters of a column in the repr of
a pandas data structure. When the column overflows, a "..."
placeholder is embedded in the output. A 'None' value means unlimited.
[default: 50] [currently: 50]
display.max_dir_items : int
The number of items that will be added to `dir(...)`. 'None' value means
unlimited. Because dir is cached, changing this option will not immediately
affect already existing dataframes until a column is deleted or added.
This is for instance used to suggest columns from a dataframe to tab
completion.
[default: 100] [currently: 100]
display.max_info_columns : int
max_info_columns is used in DataFrame.info method to decide if
per column information will be printed.
[default: 100] [currently: 100]
display.max_info_rows : int or None
df.info() will usually show null-counts for each column.
For large frames this can be quite slow. max_info_rows and max_info_cols
limit this null check only to frames with smaller dimensions than
specified.
[default: 1690785] [currently: 1690785]
display.max_rows : int
If max_rows is exceeded, switch to truncate view. Depending on
`large_repr`, objects are either centrally truncated or printed as
a summary view. 'None' value means unlimited.
In case python/IPython is running in a terminal and `large_repr`
equals 'truncate' this can be set to 0 and pandas will auto-detect
the height of the terminal and print a truncated object which fits
the screen height. The IPython notebook, IPython qtconsole, or
IDLE do not run in a terminal and hence it is not possible to do
correct auto-detection.
[default: 60] [currently: 60]
display.max_seq_items : int or None
When pretty-printing a long sequence, no more then `max_seq_items`
will be printed. If items are omitted, they will be denoted by the
addition of "..." to the resulting string.
If set to None, the number of items to be printed is unlimited.
[default: 100] [currently: 100]
display.memory_usage : bool, string or None
This specifies if the memory usage of a DataFrame should be displayed when
df.info() is called. Valid values True,False,'deep'
[default: True] [currently: True]
display.min_rows : int
The numbers of rows to show in a truncated view (when `max_rows` is
exceeded). Ignored when `max_rows` is set to None or 0. When set to
None, follows the value of `max_rows`.
[default: 10] [currently: 10]
display.multi_sparse : boolean
"sparsify" MultiIndex display (don't display repeated
elements in outer levels within groups)
[default: True] [currently: True]
display.notebook_repr_html : boolean
When True, IPython notebook will use html representation for
pandas objects (if it is available).
[default: True] [currently: True]
display.pprint_nest_depth : int
Controls the number of nested levels to process when pretty-printing
[default: 3] [currently: 3]
display.precision : int
Floating point output precision in terms of number of places after the
decimal, for regular formatting as well as scientific notation. Similar
to ``precision`` in :meth:`numpy.set_printoptions`.
[default: 6] [currently: 6]
display.show_dimensions : boolean or 'truncate'
Whether to print out dimensions at the end of DataFrame repr.
If 'truncate' is specified, only print out the dimensions if the
frame is truncated (e.g. not display all rows and/or columns)
[default: truncate] [currently: truncate]
display.unicode.ambiguous_as_wide : boolean
Whether to use the Unicode East Asian Width to calculate the display text
width.
Enabling this may affect to the performance (default: False)
[default: False] [currently: False]
display.unicode.east_asian_width : boolean
Whether to use the Unicode East Asian Width to calculate the display text
width.
Enabling this may affect to the performance (default: False)
[default: False] [currently: False]
display.width : int
Width of the display in characters. In case python/IPython is running in
a terminal this can be set to None and pandas will correctly auto-detect
the width.
Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a
terminal and hence it is not possible to correctly detect the width.
[default: 80] [currently: 80]
io.excel.ods.reader : string
The default Excel reader engine for 'ods' files. Available options:
auto, odf.
[default: auto] [currently: auto]
io.excel.ods.writer : string
The default Excel writer engine for 'ods' files. Available options:
auto, odf.
[default: auto] [currently: auto]
io.excel.xls.reader : string
The default Excel reader engine for 'xls' files. Available options:
auto, xlrd.
[default: auto] [currently: auto]
io.excel.xls.writer : string
The default Excel writer engine for 'xls' files. Available options:
auto, xlwt.
[default: auto] [currently: auto]
(Deprecated, use `` instead.)
io.excel.xlsb.reader : string
The default Excel reader engine for 'xlsb' files. Available options:
auto, pyxlsb.
[default: auto] [currently: auto]
io.excel.xlsm.reader : string
The default Excel reader engine for 'xlsm' files. Available options:
auto, xlrd, openpyxl.
[default: auto] [currently: auto]
io.excel.xlsm.writer : string
The default Excel writer engine for 'xlsm' files. Available options:
auto, openpyxl.
[default: auto] [currently: auto]
io.excel.xlsx.reader : string
The default Excel reader engine for 'xlsx' files. Available options:
auto, xlrd, openpyxl.
[default: auto] [currently: auto]
io.excel.xlsx.writer : string
The default Excel writer engine for 'xlsx' files. Available options:
auto, openpyxl, xlsxwriter.
[default: auto] [currently: auto]
io.hdf.default_format : format
default format writing format, if None, then
put will default to 'fixed' and append will default to 'table'
[default: None] [currently: None]
io.hdf.dropna_table : boolean
drop ALL nan rows when appending to a table
[default: False] [currently: False]
io.parquet.engine : string
The default parquet reader/writer engine. Available options:
'auto', 'pyarrow', 'fastparquet', the default is 'auto'
[default: auto] [currently: auto]
io.sql.engine : string
The default sql reader/writer engine. Available options:
'auto', 'sqlalchemy', the default is 'auto'
[default: auto] [currently: auto]
mode.chained_assignment : string
Raise an exception, warn, or no action if trying to use chained assignment,
The default is warn
[default: warn] [currently: warn]
mode.data_manager : string
Internal data manager type; can be "block" or "array". Defaults to "block",
unless overridden by the 'PANDAS_DATA_MANAGER' environment variable (needs
to be set before pandas is imported).
[default: block] [currently: block]
mode.sim_interactive : boolean
Whether to simulate interactive mode for purposes of testing
[default: False] [currently: False]
mode.string_storage : string
The default storage for StringDtype.
[default: python] [currently: python]
mode.use_inf_as_na : boolean
True means treat None, NaN, INF, -INF as NA (old way),
False means None and NaN are null, but INF, -INF are not NA
(new way).
[default: False] [currently: False]
mode.use_inf_as_null : boolean
use_inf_as_null had been deprecated and will be removed in a future
version. Use `use_inf_as_na` instead.
[default: False] [currently: False]
(Deprecated, use `mode.use_inf_as_na` instead.)
plotting.backend : str
The plotting backend to use. The default value is "matplotlib", the
backend provided with pandas. Other backends can be specified by
providing the name of the module that implements the backend.
[default: matplotlib] [currently: matplotlib]
plotting.matplotlib.register_converters : bool or 'auto'.
Whether to register converters with matplotlib's units registry for
dates, times, datetimes, and Periods. Toggling to False will remove
the converters, restoring any converters that pandas overwrote.
[default: auto] [currently: auto]
styler.format.decimal : str
The character representation for the decimal separator for floats and complex.
[default: .] [currently: .]
styler.format.escape : str, optional
Whether to escape certain characters according to the given context; html or latex.
[default: None] [currently: None]
styler.format.formatter : str, callable, dict, optional
A formatter object to be used as default within ``Styler.format``.
[default: None] [currently: None]
styler.format.na_rep : str, optional
The string representation for values identified as missing.
[default: None] [currently: None]
styler.format.precision : int
The precision for floats and complex numbers.
[default: 6] [currently: 6]
styler.format.thousands : str, optional
The character representation for thousands separator for floats, int and complex.
[default: None] [currently: None]
styler.html.mathjax : bool
If False will render special CSS classes to table attributes that indicate Mathjax
will not be used in Jupyter Notebook.
[default: True] [currently: True]
styler.latex.environment : str
The environment to replace ``\begin{table}``. If "longtable" is used results
in a specific longtable environment format.
[default: None] [currently: None]
styler.latex.hrules : bool
Whether to add horizontal rules on top and bottom and below the headers.
[default: False] [currently: False]
styler.latex.multicol_align : {"r", "c", "l", "naive-l", "naive-r"}
The specifier for horizontal alignment of sparsified LaTeX multicolumns. Pipe
decorators can also be added to non-naive values to draw vertical
rules, e.g. "\|r" will draw a rule on the left side of right aligned merged cells.
[default: r] [currently: r]
styler.latex.multirow_align : {"c", "t", "b"}
The specifier for vertical alignment of sparsified LaTeX multirows.
[default: c] [currently: c]
styler.render.encoding : str
The encoding used for output HTML and LaTeX files.
[default: utf-8] [currently: utf-8]
styler.render.max_columns : int, optional
The maximum number of columns that will be rendered. May still be reduced to
satsify ``max_elements``, which takes precedence.
[default: None] [currently: None]
styler.render.max_elements : int
The maximum number of data-cell (<td>) elements that will be rendered before
trimming will occur over columns, rows or both if needed.
[default: 262144] [currently: 262144]
styler.render.max_rows : int, optional
The maximum number of rows that will be rendered. May still be reduced to
satsify ``max_elements``, which takes precedence.
[default: None] [currently: None]
styler.render.repr : str
Determine which output to use in Jupyter Notebook in {"html", "latex"}.
[default: html] [currently: html]
styler.sparse.columns : bool
Whether to sparsify the display of hierarchical columns. Setting to False will
display each explicit level element in a hierarchical key for each column.
[default: True] [currently: True]
styler.sparse.index : bool
Whether to sparsify the display of a hierarchical index. Setting to False will
display each explicit level element in a hierarchical key for each row.
[default: True] [currently: True]
Getting and setting options#
As described above, get_option()
and set_option()
are available from the pandas namespace. To change an option, call
set_option('option regex', new_value)
.
In [12]: pd.get_option("mode.sim_interactive")
Out[12]: False
In [13]: pd.set_option("mode.sim_interactive", True)
In [14]: pd.get_option("mode.sim_interactive")
Out[14]: True
Note
The option 'mode.sim_interactive'
is mostly used for debugging purposes.
You can use reset_option()
to revert to a setting’s default value
In [15]: pd.get_option("display.max_rows")
Out[15]: 60
In [16]: pd.set_option("display.max_rows", 999)
In [17]: pd.get_option("display.max_rows")
Out[17]: 999
In [18]: pd.reset_option("display.max_rows")
In [19]: pd.get_option("display.max_rows")
Out[19]: 60
It’s also possible to reset multiple options at once (using a regex):
In [20]: pd.reset_option("^display")
option_context()
context manager has been exposed through
the top-level API, allowing you to execute code with given option values. Option values
are restored automatically when you exit the with
block:
In [21]: with pd.option_context("display.max_rows", 10, "display.max_columns", 5):
....: print(pd.get_option("display.max_rows"))
....: print(pd.get_option("display.max_columns"))
....:
10
5
In [22]: print(pd.get_option("display.max_rows"))
60
In [23]: print(pd.get_option("display.max_columns"))
0
Setting startup options in Python/IPython environment#
Using startup scripts for the Python/IPython environment to import pandas and set options makes working with pandas more efficient.
To do this, create a .py
or .ipy
script in the startup directory of the desired profile.
An example where the startup folder is in a default IPython profile can be found at:
$IPYTHONDIR/profile_default/startup
More information can be found in the IPython documentation. An example startup script for pandas is displayed below:
import pandas as pd
pd.set_option("display.max_rows", 999)
pd.set_option("display.precision", 5)
Frequently used options#
The following is a demonstrates the more frequently used display options.
display.max_rows
and display.max_columns
sets the maximum number
of rows and columns displayed when a frame is pretty-printed. Truncated
lines are replaced by an ellipsis.
In [24]: df = pd.DataFrame(np.random.randn(7, 2))
In [25]: pd.set_option("display.max_rows", 7)
In [26]: df
Out[26]:
0 1
0 0.469112 -0.282863
1 -1.509059 -1.135632
2 1.212112 -0.173215
3 0.119209 -1.044236
4 -0.861849 -2.104569
5 -0.494929 1.071804
6 0.721555 -0.706771
In [27]: pd.set_option("display.max_rows", 5)
In [28]: df
Out[28]:
0 1
0 0.469112 -0.282863
1 -1.509059 -1.135632
.. ... ...
5 -0.494929 1.071804
6 0.721555 -0.706771
[7 rows x 2 columns]
In [29]: pd.reset_option("display.max_rows")
Once the display.max_rows
is exceeded, the display.min_rows
options
determines how many rows are shown in the truncated repr.
In [30]: pd.set_option("display.max_rows", 8)
In [31]: pd.set_option("display.min_rows", 4)
# below max_rows -> all rows shown
In [32]: df = pd.DataFrame(np.random.randn(7, 2))
In [33]: df
Out[33]:
0 1
0 -1.039575 0.271860
1 -0.424972 0.567020
2 0.276232 -1.087401
3 -0.673690 0.113648
4 -1.478427 0.524988
5 0.404705 0.577046
6 -1.715002 -1.039268
# above max_rows -> only min_rows (4) rows shown
In [34]: df = pd.DataFrame(np.random.randn(9, 2))
In [35]: df
Out[35]:
0 1
0 -0.370647 -1.157892
1 -1.344312 0.844885
.. ... ...
7 0.276662 -0.472035
8 -0.013960 -0.362543
[9 rows x 2 columns]
In [36]: pd.reset_option("display.max_rows")
In [37]: pd.reset_option("display.min_rows")
display.expand_frame_repr
allows for the representation of a
DataFrame
to stretch across pages, wrapped over the all the columns.
In [38]: df = pd.DataFrame(np.random.randn(5, 10))
In [39]: pd.set_option("expand_frame_repr", True)
In [40]: df
Out[40]:
0 1 2 3 4 5 6 7 8 9
0 -0.006154 -0.923061 0.895717 0.805244 -1.206412 2.565646 1.431256 1.340309 -1.170299 -0.226169
1 0.410835 0.813850 0.132003 -0.827317 -0.076467 -1.187678 1.130127 -1.436737 -1.413681 1.607920
2 1.024180 0.569605 0.875906 -2.211372 0.974466 -2.006747 -0.410001 -0.078638 0.545952 -1.219217
3 -1.226825 0.769804 -1.281247 -0.727707 -0.121306 -0.097883 0.695775 0.341734 0.959726 -1.110336
4 -0.619976 0.149748 -0.732339 0.687738 0.176444 0.403310 -0.154951 0.301624 -2.179861 -1.369849
In [41]: pd.set_option("expand_frame_repr", False)
In [42]: df
Out[42]:
0 1 2 3 4 5 6 7 8 9
0 -0.006154 -0.923061 0.895717 0.805244 -1.206412 2.565646 1.431256 1.340309 -1.170299 -0.226169
1 0.410835 0.813850 0.132003 -0.827317 -0.076467 -1.187678 1.130127 -1.436737 -1.413681 1.607920
2 1.024180 0.569605 0.875906 -2.211372 0.974466 -2.006747 -0.410001 -0.078638 0.545952 -1.219217
3 -1.226825 0.769804 -1.281247 -0.727707 -0.121306 -0.097883 0.695775 0.341734 0.959726 -1.110336
4 -0.619976 0.149748 -0.732339 0.687738 0.176444 0.403310 -0.154951 0.301624 -2.179861 -1.369849
In [43]: pd.reset_option("expand_frame_repr")
display.large_repr
displays a DataFrame
that exceed
max_columns
or max_rows
as a truncated frame or summary.
In [44]: df = pd.DataFrame(np.random.randn(10, 10))
In [45]: pd.set_option("display.max_rows", 5)
In [46]: pd.set_option("large_repr", "truncate")
In [47]: df
Out[47]:
0 1 2 3 4 5 6 7 8 9
0 -0.954208 1.462696 -1.743161 -0.826591 -0.345352 1.314232 0.690579 0.995761 2.396780 0.014871
1 3.357427 -0.317441 -1.236269 0.896171 -0.487602 -0.082240 -2.182937 0.380396 0.084844 0.432390
.. ... ... ... ... ... ... ... ... ... ...
8 -0.303421 -0.858447 0.306996 -0.028665 0.384316 1.574159 1.588931 0.476720 0.473424 -0.242861
9 -0.014805 -0.284319 0.650776 -1.461665 -1.137707 -0.891060 -0.693921 1.613616 0.464000 0.227371
[10 rows x 10 columns]
In [48]: pd.set_option("large_repr", "info")
In [49]: df
Out[49]:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 0 10 non-null float64
1 1 10 non-null float64
2 2 10 non-null float64
3 3 10 non-null float64
4 4 10 non-null float64
5 5 10 non-null float64
6 6 10 non-null float64
7 7 10 non-null float64
8 8 10 non-null float64
9 9 10 non-null float64
dtypes: float64(10)
memory usage: 928.0 bytes
In [50]: pd.reset_option("large_repr")
In [51]: pd.reset_option("display.max_rows")
display.max_colwidth
sets the maximum width of columns. Cells
of this length or longer will be truncated with an ellipsis.
In [52]: df = pd.DataFrame(
....: np.array(
....: [
....: ["foo", "bar", "bim", "uncomfortably long string"],
....: ["horse", "cow", "banana", "apple"],
....: ]
....: )
....: )
....:
In [53]: pd.set_option("max_colwidth", 40)
In [54]: df
Out[54]:
0 1 2 3
0 foo bar bim uncomfortably long string
1 horse cow banana apple
In [55]: pd.set_option("max_colwidth", 6)
In [56]: df
Out[56]:
0 1 2 3
0 foo bar bim un...
1 horse cow ba... apple
In [57]: pd.reset_option("max_colwidth")
display.max_info_columns
sets a threshold for the number of columns
displayed when calling info()
.
In [58]: df = pd.DataFrame(np.random.randn(10, 10))
In [59]: pd.set_option("max_info_columns", 11)
In [60]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 0 10 non-null float64
1 1 10 non-null float64
2 2 10 non-null float64
3 3 10 non-null float64
4 4 10 non-null float64
5 5 10 non-null float64
6 6 10 non-null float64
7 7 10 non-null float64
8 8 10 non-null float64
9 9 10 non-null float64
dtypes: float64(10)
memory usage: 928.0 bytes
In [61]: pd.set_option("max_info_columns", 5)
In [62]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Columns: 10 entries, 0 to 9
dtypes: float64(10)
memory usage: 928.0 bytes
In [63]: pd.reset_option("max_info_columns")
display.max_info_rows
: info()
will usually show null-counts for each column.
For a large DataFrame
, this can be quite slow. max_info_rows
and max_info_cols
limit this null check to the specified rows and columns respectively. The info()
keyword argument null_counts=True
will override this.
In [64]: df = pd.DataFrame(np.random.choice([0, 1, np.nan], size=(10, 10)))
In [65]: df
Out[65]:
0 1 2 3 4 5 6 7 8 9
0 0.0 NaN 1.0 NaN NaN 0.0 NaN 0.0 NaN 1.0
1 1.0 NaN 1.0 1.0 1.0 1.0 NaN 0.0 0.0 NaN
2 0.0 NaN 1.0 0.0 0.0 NaN NaN NaN NaN 0.0
3 NaN NaN NaN 0.0 1.0 1.0 NaN 1.0 NaN 1.0
4 0.0 NaN NaN NaN 0.0 NaN NaN NaN 1.0 0.0
5 0.0 1.0 1.0 1.0 1.0 0.0 NaN NaN 1.0 0.0
6 1.0 1.0 1.0 NaN 1.0 NaN 1.0 0.0 NaN NaN
7 0.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 0.0 NaN
8 NaN NaN NaN 0.0 NaN NaN NaN NaN 1.0 NaN
9 0.0 NaN 0.0 NaN NaN 0.0 NaN 1.0 1.0 0.0
In [66]: pd.set_option("max_info_rows", 11)
In [67]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 0 8 non-null float64
1 1 3 non-null float64
2 2 7 non-null float64
3 3 6 non-null float64
4 4 7 non-null float64
5 5 6 non-null float64
6 6 2 non-null float64
7 7 6 non-null float64
8 8 6 non-null float64
9 9 6 non-null float64
dtypes: float64(10)
memory usage: 928.0 bytes
In [68]: pd.set_option("max_info_rows", 5)
In [69]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
# Column Dtype
--- ------ -----
0 0 float64
1 1 float64
2 2 float64
3 3 float64
4 4 float64
5 5 float64
6 6 float64
7 7 float64
8 8 float64
9 9 float64
dtypes: float64(10)
memory usage: 928.0 bytes
In [70]: pd.reset_option("max_info_rows")
display.precision
sets the output display precision in terms of decimal places.
In [71]: df = pd.DataFrame(np.random.randn(5, 5))
In [72]: pd.set_option("display.precision", 7)
In [73]: df
Out[73]:
0 1 2 3 4
0 -1.1506406 -0.7983341 -0.5576966 0.3813531 1.3371217
1 -1.5310949 1.3314582 -0.5713290 -0.0266708 -1.0856630
2 -1.1147378 -0.0582158 -0.4867681 1.6851483 0.1125723
3 -1.4953086 0.8984347 -0.1482168 -1.5960698 0.1596530
4 0.2621358 0.0362196 0.1847350 -0.2550694 -0.2710197
In [74]: pd.set_option("display.precision", 4)
In [75]: df
Out[75]:
0 1 2 3 4
0 -1.1506 -0.7983 -0.5577 0.3814 1.3371
1 -1.5311 1.3315 -0.5713 -0.0267 -1.0857
2 -1.1147 -0.0582 -0.4868 1.6851 0.1126
3 -1.4953 0.8984 -0.1482 -1.5961 0.1597
4 0.2621 0.0362 0.1847 -0.2551 -0.2710
display.chop_threshold
sets the rounding threshold to zero when displaying a
Series
or DataFrame
. This setting does not change the
precision at which the number is stored.
In [76]: df = pd.DataFrame(np.random.randn(6, 6))
In [77]: pd.set_option("chop_threshold", 0)
In [78]: df
Out[78]:
0 1 2 3 4 5
0 1.2884 0.2946 -1.1658 0.8470 -0.6856 0.6091
1 -0.3040 0.6256 -0.0593 0.2497 1.1039 -1.0875
2 1.9980 -0.2445 0.1362 0.8863 -1.3507 -0.8863
3 -1.0133 1.9209 -0.3882 -2.3144 0.6655 0.4026
4 0.3996 -1.7660 0.8504 0.3881 0.9923 0.7441
5 -0.7398 -1.0549 -0.1796 0.6396 1.5850 1.9067
In [79]: pd.set_option("chop_threshold", 0.5)
In [80]: df
Out[80]:
0 1 2 3 4 5
0 1.2884 0.0000 -1.1658 0.8470 -0.6856 0.6091
1 0.0000 0.6256 0.0000 0.0000 1.1039 -1.0875
2 1.9980 0.0000 0.0000 0.8863 -1.3507 -0.8863
3 -1.0133 1.9209 0.0000 -2.3144 0.6655 0.0000
4 0.0000 -1.7660 0.8504 0.0000 0.9923 0.7441
5 -0.7398 -1.0549 0.0000 0.6396 1.5850 1.9067
In [81]: pd.reset_option("chop_threshold")
display.colheader_justify
controls the justification of the headers.
The options are 'right'
, and 'left'
.
In [82]: df = pd.DataFrame(
....: np.array([np.random.randn(6), np.random.randint(1, 9, 6) * 0.1, np.zeros(6)]).T,
....: columns=["A", "B", "C"],
....: dtype="float",
....: )
....:
In [83]: pd.set_option("colheader_justify", "right")
In [84]: df
Out[84]:
A B C
0 0.1040 0.1 0.0
1 0.1741 0.5 0.0
2 -0.4395 0.4 0.0
3 -0.7413 0.8 0.0
4 -0.0797 0.4 0.0
5 -0.9229 0.3 0.0
In [85]: pd.set_option("colheader_justify", "left")
In [86]: df
Out[86]:
A B C
0 0.1040 0.1 0.0
1 0.1741 0.5 0.0
2 -0.4395 0.4 0.0
3 -0.7413 0.8 0.0
4 -0.0797 0.4 0.0
5 -0.9229 0.3 0.0
In [87]: pd.reset_option("colheader_justify")
Number formatting#
pandas also allows you to set how numbers are displayed in the console.
This option is not set through the set_options
API.
Use the set_eng_float_format
function
to alter the floating-point formatting of pandas objects to produce a particular
format.
In [88]: import numpy as np
In [89]: pd.set_eng_float_format(accuracy=3, use_eng_prefix=True)
In [90]: s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])
In [91]: s / 1.0e3
Out[91]:
a 303.638u
b -721.084u
c -622.696u
d 648.250u
e -1.945m
dtype: float64
In [92]: s / 1.0e6
Out[92]:
a 303.638n
b -721.084n
c -622.696n
d 648.250n
e -1.945u
dtype: float64
Use round()
to specifically control rounding of an individual DataFrame
Unicode formatting#
Warning
Enabling this option will affect the performance for printing of DataFrame and Series (about 2 times slower). Use only when it is actually required.
Some East Asian countries use Unicode characters whose width corresponds to two Latin characters. If a DataFrame or Series contains these characters, the default output mode may not align them properly.
In [93]: df = pd.DataFrame({"国籍": ["UK", "日本"], "名前": ["Alice", "しのぶ"]})
In [94]: df
Out[94]:
国籍 名前
0 UK Alice
1 日本 しのぶ
Enabling display.unicode.east_asian_width
allows pandas to check each character’s “East Asian Width” property.
These characters can be aligned properly by setting this option to True
. However, this will result in longer render
times than the standard len
function.
In [95]: pd.set_option("display.unicode.east_asian_width", True)
In [96]: df
Out[96]:
国籍 名前
0 UK Alice
1 日本 しのぶ
In addition, Unicode characters whose width is “ambiguous” can either be 1 or 2 characters wide depending on the
terminal setting or encoding. The option display.unicode.ambiguous_as_wide
can be used to handle the ambiguity.
By default, an “ambiguous” character’s width, such as “¡” (inverted exclamation) in the example below, is taken to be 1.
In [97]: df = pd.DataFrame({"a": ["xxx", "¡¡"], "b": ["yyy", "¡¡"]})
In [98]: df
Out[98]:
a b
0 xxx yyy
1 ¡¡ ¡¡
Enabling display.unicode.ambiguous_as_wide
makes pandas interpret these characters’ widths to be 2.
(Note that this option will only be effective when display.unicode.east_asian_width
is enabled.)
However, setting this option incorrectly for your terminal will cause these characters to be aligned incorrectly:
In [99]: pd.set_option("display.unicode.ambiguous_as_wide", True)
In [100]: df
Out[100]:
a b
0 xxx yyy
1 ¡¡ ¡¡
Table schema display#
DataFrame
and Series
will publish a Table Schema representation
by default. This can be enabled globally with the
display.html.table_schema
option:
In [101]: pd.set_option("display.html.table_schema", True)
Only 'display.max_rows'
are serialized and published.