pandas.DataFrame.drop_duplicates#
- DataFrame.drop_duplicates(subset=None, keep='first', inplace=False, ignore_index=False)[source]#
- Return DataFrame with duplicate rows removed. - Considering certain columns is optional. Indexes, including time indexes are ignored. - Parameters
- subsetcolumn label or sequence of labels, optional
- Only consider certain columns for identifying duplicates, by default use all of the columns. 
- keep{‘first’, ‘last’, False}, default ‘first’
- Determines which duplicates (if any) to keep. - - first: Drop duplicates except for the first occurrence. -- last: Drop duplicates except for the last occurrence. - False : Drop all duplicates.
- inplacebool, default False
- Whether to drop duplicates in place or to return a copy. 
- ignore_indexbool, default False
- If True, the resulting axis will be labeled 0, 1, …, n - 1. - New in version 1.0.0. 
 
- Returns
- DataFrame or None
- DataFrame with duplicates removed or None if - inplace=True.
 
 - See also - DataFrame.value_counts
- Count unique combinations of columns. 
 - Examples - Consider dataset containing ramen rating. - >>> df = pd.DataFrame({ ... 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'], ... 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], ... 'rating': [4, 4, 3.5, 15, 5] ... }) >>> df brand style rating 0 Yum Yum cup 4.0 1 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 - By default, it removes duplicate rows based on all columns. - >>> df.drop_duplicates() brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 - To remove duplicates on specific column(s), use - subset.- >>> df.drop_duplicates(subset=['brand']) brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5 - To remove duplicates and keep last occurrences, use - keep.- >>> df.drop_duplicates(subset=['brand', 'style'], keep='last') brand style rating 1 Yum Yum cup 4.0 2 Indomie cup 3.5 4 Indomie pack 5.0