pandas.DataFrame.from_records#
- classmethod DataFrame.from_records(data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None)[source]#
Convert structured or record ndarray to DataFrame.
Creates a DataFrame object from a structured ndarray, sequence of tuples or dicts, or DataFrame.
- Parameters
- datastructured ndarray, sequence of tuples or dicts, or DataFrame
Structured input data.
- indexstr, list of fields, array-like
Field of array to use as the index, alternately a specific set of input labels to use.
- excludesequence, default None
Columns or fields to exclude.
- columnssequence, default None
Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns).
- coerce_floatbool, default False
Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets.
- nrowsint, default None
Number of rows to read if data is an iterator.
- Returns
- DataFrame
See also
DataFrame.from_dict
DataFrame from dict of array-like or dicts.
DataFrame
DataFrame object creation using constructor.
Examples
Data can be provided as a structured ndarray:
>>> data = np.array([(3, 'a'), (2, 'b'), (1, 'c'), (0, 'd')], ... dtype=[('col_1', 'i4'), ('col_2', 'U1')]) >>> pd.DataFrame.from_records(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d
Data can be provided as a list of dicts:
>>> data = [{'col_1': 3, 'col_2': 'a'}, ... {'col_1': 2, 'col_2': 'b'}, ... {'col_1': 1, 'col_2': 'c'}, ... {'col_1': 0, 'col_2': 'd'}] >>> pd.DataFrame.from_records(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d
Data can be provided as a list of tuples with corresponding columns:
>>> data = [(3, 'a'), (2, 'b'), (1, 'c'), (0, 'd')] >>> pd.DataFrame.from_records(data, columns=['col_1', 'col_2']) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d