pandas.Index.isna#
- final Index.isna()[source]#
- Detect missing values. - Return a boolean same-sized object indicating if the values are NA. NA values, such as - None,- numpy.NaNor- pd.NaT, get mapped to- Truevalues. Everything else get mapped to- Falsevalues. Characters such as empty strings ‘’ or- numpy.infare not considered NA values (unless you set- pandas.options.mode.use_inf_as_na = True).- Returns
- numpy.ndarray[bool]
- A boolean array of whether my values are NA. 
 
 - See also - Index.notna
- Boolean inverse of isna. 
- Index.dropna
- Omit entries with missing values. 
- isna
- Top-level isna. 
- Series.isna
- Detect missing values in Series object. 
 - Examples - Show which entries in a pandas.Index are NA. The result is an array. - >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.isna() array([False, False, True]) - Empty strings are not considered NA values. None is considered an NA value. - >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.isna() array([False, False, False, True]) - For datetimes, NaT (Not a Time) is considered as an NA value. - >>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'), ... pd.Timestamp(''), None, pd.NaT]) >>> idx DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None) >>> idx.isna() array([False, True, True, True])