pandas.Index.sort_values#
- Index.sort_values(return_indexer=False, ascending=True, na_position='last', key=None)[source]#
- Return a sorted copy of the index. - Return a sorted copy of the index, and optionally return the indices that sorted the index itself. - Parameters
- return_indexerbool, default False
- Should the indices that would sort the index be returned. 
- ascendingbool, default True
- Should the index values be sorted in an ascending order. 
- na_position{‘first’ or ‘last’}, default ‘last’
- Argument ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end. - New in version 1.2.0. 
- keycallable, optional
- If not None, apply the key function to the index values before sorting. This is similar to the key argument in the builtin - sorted()function, with the notable difference that this key function should be vectorized. It should expect an- Indexand return an- Indexof the same shape.- New in version 1.1.0. 
 
- Returns
- sorted_indexpandas.Index
- Sorted copy of the index. 
- indexernumpy.ndarray, optional
- The indices that the index itself was sorted by. 
 
 - See also - Series.sort_values
- Sort values of a Series. 
- DataFrame.sort_values
- Sort values in a DataFrame. 
 - Examples - >>> idx = pd.Index([10, 100, 1, 1000]) >>> idx Int64Index([10, 100, 1, 1000], dtype='int64') - Sort values in ascending order (default behavior). - >>> idx.sort_values() Int64Index([1, 10, 100, 1000], dtype='int64') - Sort values in descending order, and also get the indices idx was sorted by. - >>> idx.sort_values(ascending=False, return_indexer=True) (Int64Index([1000, 100, 10, 1], dtype='int64'), array([3, 1, 0, 2]))