pandas.core.groupby.DataFrameGroupBy.corr#
- property DataFrameGroupBy.corr#
- Compute pairwise correlation of columns, excluding NA/null values. - Parameters
- method{‘pearson’, ‘kendall’, ‘spearman’} or callable
- Method of correlation: - pearson : standard correlation coefficient 
- kendall : Kendall Tau correlation coefficient 
- spearman : Spearman rank correlation 
- callable: callable with input two 1d ndarrays
- and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable’s behavior. 
 
 
- min_periodsint, optional
- Minimum number of observations required per pair of columns to have a valid result. Currently only available for Pearson and Spearman correlation. 
 
- Returns
- DataFrame
- Correlation matrix. 
 
 - See also - DataFrame.corrwith
- Compute pairwise correlation with another DataFrame or Series. 
- Series.corr
- Compute the correlation between two Series. 
 - Examples - >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr(method=histogram_intersection) dogs cats dogs 1.0 0.3 cats 0.3 1.0