pandas.core.groupby.DataFrameGroupBy.idxmin#
- DataFrameGroupBy.idxmin(axis=0, skipna=True)[source]#
- Return index of first occurrence of minimum over requested axis. - NA/null values are excluded. - Parameters
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
- The axis to use. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise. 
- skipnabool, default True
- Exclude NA/null values. If an entire row/column is NA, the result will be NA. 
 
- Returns
- Series
- Indexes of minima along the specified axis. 
 
- Raises
- ValueError
- If the row/column is empty 
 
 
 - See also - Series.idxmin
- Return index of the minimum element. 
 - Notes - This method is the DataFrame version of - ndarray.argmin.- Examples - Consider a dataset containing food consumption in Argentina. - >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48], ... 'co2_emissions': [37.2, 19.66, 1712]}, ... index=['Pork', 'Wheat Products', 'Beef']) - >>> df consumption co2_emissions Pork 10.51 37.20 Wheat Products 103.11 19.66 Beef 55.48 1712.00 - By default, it returns the index for the minimum value in each column. - >>> df.idxmin() consumption Pork co2_emissions Wheat Products dtype: object - To return the index for the minimum value in each row, use - axis="columns".- >>> df.idxmin(axis="columns") Pork consumption Wheat Products co2_emissions Beef consumption dtype: object