pandas.core.window.expanding.Expanding.corr#
- Expanding.corr(other=None, pairwise=None, ddof=1, **kwargs)[source]#
- Calculate the expanding correlation. - Parameters
- otherSeries or DataFrame, optional
- If not supplied then will default to self and produce pairwise output. 
- pairwisebool, default None
- If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndexed DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. 
- **kwargs
- For NumPy compatibility and will not have an effect on the result. 
 
- Returns
- Series or DataFrame
- Return type is the same as the original object with - np.float64dtype.
 
 - See also - cov
- Similar method to calculate covariance. 
- numpy.corrcoef
- NumPy Pearson’s correlation calculation. 
- pandas.Series.expanding
- Calling expanding with Series data. 
- pandas.DataFrame.expanding
- Calling expanding with DataFrames. 
- pandas.Series.corr
- Aggregating corr for Series. 
- pandas.DataFrame.corr
- Aggregating corr for DataFrame. 
 - Notes - This function uses Pearson’s definition of correlation (https://en.wikipedia.org/wiki/Pearson_correlation_coefficient). - When other is not specified, the output will be self correlation (e.g. all 1’s), except for - DataFrameinputs with pairwise set to True.- Function will return - NaNfor correlations of equal valued sequences; this is the result of a 0/0 division error.- When pairwise is set to False, only matching columns between self and other will be used. - When pairwise is set to True, the output will be a MultiIndex DataFrame with the original index on the first level, and the other DataFrame columns on the second level. - In the case of missing elements, only complete pairwise observations will be used.