pandas.core.window.expanding.Expanding.std#
- Expanding.std(ddof=1, *args, engine=None, engine_kwargs=None, **kwargs)[source]#
- Calculate the expanding standard deviation. - Parameters
- ddofint, default 1
- Delta Degrees of Freedom. The divisor used in calculations is - N - ddof, where- Nrepresents the number of elements.
- *args
- For NumPy compatibility and will not have an effect on the result. 
- enginestr, default None
- 'cython': Runs the operation through C-extensions from cython.
- 'numba': Runs the operation through JIT compiled code from numba.
- None: Defaults to- 'cython'or globally setting- compute.use_numba- New in version 1.4.0. 
 
- engine_kwargsdict, default None
- For - 'cython'engine, there are no accepted- engine_kwargs
- For - 'numba'engine, the engine can accept- nopython,- nogiland- paralleldictionary keys. The values must either be- Trueor- False. The default- engine_kwargsfor the- 'numba'engine is- {'nopython': True, 'nogil': False, 'parallel': False}- New in version 1.4.0. 
 
- **kwargs
- For NumPy compatibility and will not have an effect on the result. 
 
- Returns
- Series or DataFrame
- Return type is the same as the original object with - np.float64dtype.
 
 - See also - numpy.std
- Equivalent method for NumPy array. 
- pandas.Series.expanding
- Calling expanding with Series data. 
- pandas.DataFrame.expanding
- Calling expanding with DataFrames. 
- pandas.Series.std
- Aggregating std for Series. 
- pandas.DataFrame.std
- Aggregating std for DataFrame. 
 - Notes - The default - ddofof 1 used in- Series.std()is different than the default- ddofof 0 in- numpy.std().- A minimum of one period is required for the rolling calculation. - Examples - >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) - >>> s.expanding(3).std() 0 NaN 1 NaN 2 0.577350 3 0.957427 4 0.894427 5 0.836660 6 0.786796 dtype: float64