pandas.get_dummies#
- pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None)[source]#
- Convert categorical variable into dummy/indicator variables. - Parameters
- dataarray-like, Series, or DataFrame
- Data of which to get dummy indicators. 
- prefixstr, list of str, or dict of str, default None
- String to append DataFrame column names. Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternatively, prefix can be a dictionary mapping column names to prefixes. 
- prefix_sepstr, default ‘_’
- If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with prefix. 
- dummy_nabool, default False
- Add a column to indicate NaNs, if False NaNs are ignored. 
- columnslist-like, default None
- Column names in the DataFrame to be encoded. If columns is None then all the columns with object or category dtype will be converted. 
- sparsebool, default False
- Whether the dummy-encoded columns should be backed by a - SparseArray(True) or a regular NumPy array (False).
- drop_firstbool, default False
- Whether to get k-1 dummies out of k categorical levels by removing the first level. 
- dtypedtype, default np.uint8
- Data type for new columns. Only a single dtype is allowed. 
 
- Returns
- DataFrame
- Dummy-coded data. 
 
 - See also - Series.str.get_dummies
- Convert Series to dummy codes. 
 - Notes - Reference the user guide for more examples. - Examples - >>> s = pd.Series(list('abca')) - >>> pd.get_dummies(s) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 - >>> s1 = ['a', 'b', np.nan] - >>> pd.get_dummies(s1) a b 0 1 0 1 0 1 2 0 0 - >>> pd.get_dummies(s1, dummy_na=True) a b NaN 0 1 0 0 1 0 1 0 2 0 0 1 - >>> df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], ... 'C': [1, 2, 3]}) - >>> pd.get_dummies(df, prefix=['col1', 'col2']) C col1_a col1_b col2_a col2_b col2_c 0 1 1 0 0 1 0 1 2 0 1 1 0 0 2 3 1 0 0 0 1 - >>> pd.get_dummies(pd.Series(list('abcaa'))) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 4 1 0 0 - >>> pd.get_dummies(pd.Series(list('abcaa')), drop_first=True) b c 0 0 0 1 1 0 2 0 1 3 0 0 4 0 0 - >>> pd.get_dummies(pd.Series(list('abc')), dtype=float) a b c 0 1.0 0.0 0.0 1 0.0 1.0 0.0 2 0.0 0.0 1.0