pandas.io.formats.style.Styler.highlight_quantile#
- Styler.highlight_quantile(subset=None, color='yellow', axis=0, q_left=0.0, q_right=1.0, interpolation='linear', inclusive='both', props=None)[source]#
- Highlight values defined by a quantile with a style. - New in version 1.3.0. - Parameters
- subsetlabel, array-like, IndexSlice, optional
- A valid 2d input to DataFrame.loc[<subset>], or, in the case of a 1d input or single key, to DataFrame.loc[:, <subset>] where the columns are prioritised, to limit - datato before applying the function.
- colorstr, default ‘yellow’
- Background color to use for highlighting. 
- axis{0 or ‘index’, 1 or ‘columns’, None}, default 0
- Axis along which to determine and highlight quantiles. If - Nonequantiles are measured over the entire DataFrame. See examples.
- q_leftfloat, default 0
- Left bound, in [0, q_right), for the target quantile range. 
- q_rightfloat, default 1
- Right bound, in (q_left, 1], for the target quantile range. 
- interpolation{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}
- Argument passed to - Series.quantileor- DataFrame.quantilefor quantile estimation.
- inclusive{‘both’, ‘neither’, ‘left’, ‘right’}
- Identify whether quantile bounds are closed or open. 
- propsstr, default None
- CSS properties to use for highlighting. If - propsis given,- coloris not used.
 
- Returns
- selfStyler
 
 - See also - Styler.highlight_null
- Highlight missing values with a style. 
- Styler.highlight_max
- Highlight the maximum with a style. 
- Styler.highlight_min
- Highlight the minimum with a style. 
- Styler.highlight_between
- Highlight a defined range with a style. 
 - Notes - This function does not work with - strdtypes.- Examples - Using - axis=Noneand apply a quantile to all collective data- >>> df = pd.DataFrame(np.arange(10).reshape(2,5) + 1) >>> df.style.highlight_quantile(axis=None, q_left=0.8, color="#fffd75") ...   - Or highlight quantiles row-wise or column-wise, in this case by row-wise - >>> df.style.highlight_quantile(axis=1, q_left=0.8, color="#fffd75") ...   - Use - propsinstead of default background coloring- >>> df.style.highlight_quantile(axis=None, q_left=0.2, q_right=0.8, ... props='font-weight:bold;color:#e83e8c') 