pandas.io.formats.style.Styler.pipe#
- Styler.pipe(func, *args, **kwargs)[source]#
- Apply - func(self, *args, **kwargs), and return the result.- Parameters
- funcfunction
- Function to apply to the Styler. Alternatively, a - (callable, keyword)tuple where- keywordis a string indicating the keyword of- callablethat expects the Styler.
- *argsoptional
- Arguments passed to func. 
- **kwargsoptional
- A dictionary of keyword arguments passed into - func.
 
- Returns
- object :
- The value returned by - func.
 
 - See also - DataFrame.pipe
- Analogous method for DataFrame. 
- Styler.apply
- Apply a CSS-styling function column-wise, row-wise, or table-wise. 
 - Notes - Like - DataFrame.pipe(), this method can simplify the application of several user-defined functions to a styler. Instead of writing:- f(g(df.style.set_precision(3), arg1=a), arg2=b, arg3=c) - users can write: - (df.style.set_precision(3) .pipe(g, arg1=a) .pipe(f, arg2=b, arg3=c)) - In particular, this allows users to define functions that take a styler object, along with other parameters, and return the styler after making styling changes (such as calling - Styler.apply()or- Styler.set_properties()). Using- .pipe, these user-defined style “transformations” can be interleaved with calls to the built-in Styler interface.- Examples - >>> def format_conversion(styler): ... return (styler.set_properties(**{'text-align': 'right'}) ... .format({'conversion': '{:.1%}'})) - The user-defined - format_conversionfunction above can be called within a sequence of other style modifications:- >>> df = pd.DataFrame({'trial': list(range(5)), ... 'conversion': [0.75, 0.85, np.nan, 0.7, 0.72]}) >>> (df.style ... .highlight_min(subset=['conversion'], color='yellow') ... .pipe(format_conversion) ... .set_caption("Results with minimum conversion highlighted.")) ... 