pandas.Index.array#
- Index.array#
- The ExtensionArray of the data backing this Series or Index. - Returns
- ExtensionArray
- An ExtensionArray of the values stored within. For extension types, this is the actual array. For NumPy native types, this is a thin (no copy) wrapper around - numpy.ndarray.- .arraydiffers- .valueswhich may require converting the data to a different form.
 
 - See also - Index.to_numpy
- Similar method that always returns a NumPy array. 
- Series.to_numpy
- Similar method that always returns a NumPy array. 
 - Notes - This table lays out the different array types for each extension dtype within pandas. - dtype - array type - category - Categorical - period - PeriodArray - interval - IntervalArray - IntegerNA - IntegerArray - string - StringArray - boolean - BooleanArray - datetime64[ns, tz] - DatetimeArray - For any 3rd-party extension types, the array type will be an ExtensionArray. - For all remaining dtypes - .arraywill be a- arrays.NumpyExtensionArraywrapping the actual ndarray stored within. If you absolutely need a NumPy array (possibly with copying / coercing data), then use- Series.to_numpy()instead.- Examples - For regular NumPy types like int, and float, a PandasArray is returned. - >>> pd.Series([1, 2, 3]).array <PandasArray> [1, 2, 3] Length: 3, dtype: int64 - For extension types, like Categorical, the actual ExtensionArray is returned - >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a'])) >>> ser.array ['a', 'b', 'a'] Categories (2, object): ['a', 'b']