Version 0.19.0 (October 2, 2016)#
This is a major release from 0.18.1 and includes number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
Highlights include:
- merge_asof()for asof-style time-series joining, see here
- .rolling()is now time-series aware, see here
- read_csv()now supports parsing- Categoricaldata, see here
- A function - union_categorical()has been added for combining categoricals, see here
- PeriodIndexnow has its own- perioddtype, and changed to be more consistent with other- Indexclasses. See here
- Sparse data structures gained enhanced support of - intand- booldtypes, see here
- Comparison operations with - Seriesno longer ignores the index, see here for an overview of the API changes.
- Introduction of a pandas development API for utility functions, see here. 
- Deprecation of - Panel4Dand- PanelND. We recommend to represent these types of n-dimensional data with the xarray package.
- Removal of the previously deprecated modules - pandas.io.data,- pandas.io.wb,- pandas.tools.rplot.
Warning
pandas >= 0.19.0 will no longer silence numpy ufunc warnings upon import, see here.
What’s new in v0.19.0
New features#
Function merge_asof for asof-style time-series joining#
A long-time requested feature has been added through the merge_asof() function, to
support asof style joining of time-series (GH1870, GH13695, GH13709, GH13902). Full documentation is
here.
The merge_asof() performs an asof merge, which is similar to a left-join
except that we match on nearest key rather than equal keys.
In [1]: left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]})
In [2]: right = pd.DataFrame({"a": [1, 2, 3, 6, 7], "right_val": [1, 2, 3, 6, 7]})
In [3]: left
Out[3]: 
    a left_val
0   1        a
1   5        b
2  10        c
[3 rows x 2 columns]
In [4]: right
Out[4]: 
   a  right_val
0  1          1
1  2          2
2  3          3
3  6          6
4  7          7
[5 rows x 2 columns]
We typically want to match exactly when possible, and use the most recent value otherwise.
In [5]: pd.merge_asof(left, right, on="a")
Out[5]: 
    a left_val  right_val
0   1        a          1
1   5        b          3
2  10        c          7
[3 rows x 3 columns]
We can also match rows ONLY with prior data, and not an exact match.
In [6]: pd.merge_asof(left, right, on="a", allow_exact_matches=False)
Out[6]: 
    a left_val  right_val
0   1        a        NaN
1   5        b        3.0
2  10        c        7.0
[3 rows x 3 columns]
In a typical time-series example, we have trades and quotes and we want to asof-join them.
This also illustrates using the by parameter to group data before merging.
In [7]: trades = pd.DataFrame(
   ...:     {
   ...:         "time": pd.to_datetime(
   ...:             [
   ...:                 "20160525 13:30:00.023",
   ...:                 "20160525 13:30:00.038",
   ...:                 "20160525 13:30:00.048",
   ...:                 "20160525 13:30:00.048",
   ...:                 "20160525 13:30:00.048",
   ...:             ]
   ...:         ),
   ...:         "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"],
   ...:         "price": [51.95, 51.95, 720.77, 720.92, 98.00],
   ...:         "quantity": [75, 155, 100, 100, 100],
   ...:     },
   ...:     columns=["time", "ticker", "price", "quantity"],
   ...: )
   ...: 
In [8]: quotes = pd.DataFrame(
   ...:     {
   ...:         "time": pd.to_datetime(
   ...:             [
   ...:                 "20160525 13:30:00.023",
   ...:                 "20160525 13:30:00.023",
   ...:                 "20160525 13:30:00.030",
   ...:                 "20160525 13:30:00.041",
   ...:                 "20160525 13:30:00.048",
   ...:                 "20160525 13:30:00.049",
   ...:                 "20160525 13:30:00.072",
   ...:                 "20160525 13:30:00.075",
   ...:             ]
   ...:         ),
   ...:         "ticker": ["GOOG", "MSFT", "MSFT", "MSFT", "GOOG", "AAPL", "GOOG", "MSFT"],
   ...:         "bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01],
   ...:         "ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03],
   ...:     },
   ...:     columns=["time", "ticker", "bid", "ask"],
   ...: )
   ...: 
In [9]: trades
Out[9]: 
                     time ticker   price  quantity
0 2016-05-25 13:30:00.023   MSFT   51.95        75
1 2016-05-25 13:30:00.038   MSFT   51.95       155
2 2016-05-25 13:30:00.048   GOOG  720.77       100
3 2016-05-25 13:30:00.048   GOOG  720.92       100
4 2016-05-25 13:30:00.048   AAPL   98.00       100
[5 rows x 4 columns]
In [10]: quotes
Out[10]: 
                     time ticker     bid     ask
0 2016-05-25 13:30:00.023   GOOG  720.50  720.93
1 2016-05-25 13:30:00.023   MSFT   51.95   51.96
2 2016-05-25 13:30:00.030   MSFT   51.97   51.98
3 2016-05-25 13:30:00.041   MSFT   51.99   52.00
4 2016-05-25 13:30:00.048   GOOG  720.50  720.93
5 2016-05-25 13:30:00.049   AAPL   97.99   98.01
6 2016-05-25 13:30:00.072   GOOG  720.50  720.88
7 2016-05-25 13:30:00.075   MSFT   52.01   52.03
[8 rows x 4 columns]
An asof merge joins on the on, typically a datetimelike field, which is ordered, and
in this case we are using a grouper in the by field. This is like a left-outer join, except
that forward filling happens automatically taking the most recent non-NaN value.
In [11]: pd.merge_asof(trades, quotes, on="time", by="ticker")
Out[11]: 
                     time ticker   price  quantity     bid     ask
0 2016-05-25 13:30:00.023   MSFT   51.95        75   51.95   51.96
1 2016-05-25 13:30:00.038   MSFT   51.95       155   51.97   51.98
2 2016-05-25 13:30:00.048   GOOG  720.77       100  720.50  720.93
3 2016-05-25 13:30:00.048   GOOG  720.92       100  720.50  720.93
4 2016-05-25 13:30:00.048   AAPL   98.00       100     NaN     NaN
[5 rows x 6 columns]
This returns a merged DataFrame with the entries in the same order as the original left
passed DataFrame (trades in this case), with the fields of the quotes merged.
Method .rolling() is now time-series aware#
.rolling() objects are now time-series aware and can accept a time-series offset (or convertible) for the window argument (GH13327, GH12995).
See the full documentation here.
In [12]: dft = pd.DataFrame(
   ....:     {"B": [0, 1, 2, np.nan, 4]},
   ....:     index=pd.date_range("20130101 09:00:00", periods=5, freq="s"),
   ....: )
   ....: 
In [13]: dft
Out[13]: 
                       B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:01  1.0
2013-01-01 09:00:02  2.0
2013-01-01 09:00:03  NaN
2013-01-01 09:00:04  4.0
[5 rows x 1 columns]
This is a regular frequency index. Using an integer window parameter works to roll along the window frequency.
In [14]: dft.rolling(2).sum()
Out[14]: 
                       B
2013-01-01 09:00:00  NaN
2013-01-01 09:00:01  1.0
2013-01-01 09:00:02  3.0
2013-01-01 09:00:03  NaN
2013-01-01 09:00:04  NaN
[5 rows x 1 columns]
In [15]: dft.rolling(2, min_periods=1).sum()
Out[15]: 
                       B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:01  1.0
2013-01-01 09:00:02  3.0
2013-01-01 09:00:03  2.0
2013-01-01 09:00:04  4.0
[5 rows x 1 columns]
Specifying an offset allows a more intuitive specification of the rolling frequency.
In [16]: dft.rolling("2s").sum()
Out[16]: 
                       B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:01  1.0
2013-01-01 09:00:02  3.0
2013-01-01 09:00:03  2.0
2013-01-01 09:00:04  4.0
[5 rows x 1 columns]
Using a non-regular, but still monotonic index, rolling with an integer window does not impart any special calculation.
In [17]: dft = pd.DataFrame(
   ....:     {"B": [0, 1, 2, np.nan, 4]},
   ....:     index=pd.Index(
   ....:         [
   ....:             pd.Timestamp("20130101 09:00:00"),
   ....:             pd.Timestamp("20130101 09:00:02"),
   ....:             pd.Timestamp("20130101 09:00:03"),
   ....:             pd.Timestamp("20130101 09:00:05"),
   ....:             pd.Timestamp("20130101 09:00:06"),
   ....:         ],
   ....:         name="foo",
   ....:     ),
   ....: )
   ....: 
In [18]: dft
Out[18]: 
                       B
foo                     
2013-01-01 09:00:00  0.0
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  2.0
2013-01-01 09:00:05  NaN
2013-01-01 09:00:06  4.0
[5 rows x 1 columns]
In [19]: dft.rolling(2).sum()
Out[19]: 
                       B
foo                     
2013-01-01 09:00:00  NaN
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  3.0
2013-01-01 09:00:05  NaN
2013-01-01 09:00:06  NaN
[5 rows x 1 columns]
Using the time-specification generates variable windows for this sparse data.
In [20]: dft.rolling("2s").sum()
Out[20]: 
                       B
foo                     
2013-01-01 09:00:00  0.0
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  3.0
2013-01-01 09:00:05  NaN
2013-01-01 09:00:06  4.0
[5 rows x 1 columns]
Furthermore, we now allow an optional on parameter to specify a column (rather than the
default of the index) in a DataFrame.
In [21]: dft = dft.reset_index()
In [22]: dft
Out[22]: 
                  foo    B
0 2013-01-01 09:00:00  0.0
1 2013-01-01 09:00:02  1.0
2 2013-01-01 09:00:03  2.0
3 2013-01-01 09:00:05  NaN
4 2013-01-01 09:00:06  4.0
[5 rows x 2 columns]
In [23]: dft.rolling("2s", on="foo").sum()
Out[23]: 
                  foo    B
0 2013-01-01 09:00:00  0.0
1 2013-01-01 09:00:02  1.0
2 2013-01-01 09:00:03  3.0
3 2013-01-01 09:00:05  NaN
4 2013-01-01 09:00:06  4.0
[5 rows x 2 columns]
Method read_csv has improved support for duplicate column names#
Duplicate column names are now supported in read_csv() whether
they are in the file or passed in as the names parameter (GH7160, GH9424)
In [24]: data = "0,1,2\n3,4,5"
In [25]: names = ["a", "b", "a"]
Previous behavior:
In [2]: pd.read_csv(StringIO(data), names=names)
Out[2]:
   a  b  a
0  2  1  2
1  5  4  5
The first a column contained the same data as the second a column, when it should have
contained the values [0, 3].
New behavior:
In [26]: pd.read_csv(StringIO(data), names=names)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Input In [26], in <cell line: 1>()
----> 1 pd.read_csv(StringIO(data), names=names)
File /pandas/pandas/util/_decorators.py:311, in deprecate_nonkeyword_arguments.<locals>.decorate.<locals>.wrapper(*args, **kwargs)
    305 if len(args) > num_allow_args:
    306     warnings.warn(
    307         msg.format(arguments=arguments),
    308         FutureWarning,
    309         stacklevel=stacklevel,
    310     )
--> 311 return func(*args, **kwargs)
File /pandas/pandas/io/parsers/readers.py:680, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, error_bad_lines, warn_bad_lines, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options)
    665 kwds_defaults = _refine_defaults_read(
    666     dialect,
    667     delimiter,
   (...)
    676     defaults={"delimiter": ","},
    677 )
    678 kwds.update(kwds_defaults)
--> 680 return _read(filepath_or_buffer, kwds)
File /pandas/pandas/io/parsers/readers.py:572, in _read(filepath_or_buffer, kwds)
    569 nrows = kwds.get("nrows", None)
    571 # Check for duplicates in names.
--> 572 _validate_names(kwds.get("names", None))
    574 # Create the parser.
    575 parser = TextFileReader(filepath_or_buffer, **kwds)
File /pandas/pandas/io/parsers/readers.py:532, in _validate_names(names)
    530 if names is not None:
    531     if len(names) != len(set(names)):
--> 532         raise ValueError("Duplicate names are not allowed.")
    533     if not (
    534         is_list_like(names, allow_sets=False) or isinstance(names, abc.KeysView)
    535     ):
    536         raise ValueError("Names should be an ordered collection.")
ValueError: Duplicate names are not allowed.
Method read_csv supports parsing Categorical directly#
The read_csv() function now supports parsing a Categorical column when
specified as a dtype (GH10153).  Depending on the structure of the data,
this can result in a faster parse time and lower memory usage compared to
converting to Categorical after parsing.  See the io docs here.
In [27]: data = """
   ....: col1,col2,col3
   ....: a,b,1
   ....: a,b,2
   ....: c,d,3
   ....: """
   ....: 
In [28]: pd.read_csv(StringIO(data))
Out[28]: 
  col1 col2  col3
0    a    b     1
1    a    b     2
2    c    d     3
[3 rows x 3 columns]
In [29]: pd.read_csv(StringIO(data)).dtypes
Out[29]: 
col1    object
col2    object
col3     int64
Length: 3, dtype: object
In [30]: pd.read_csv(StringIO(data), dtype="category").dtypes
Out[30]: 
col1    category
col2    category
col3    category
Length: 3, dtype: object
Individual columns can be parsed as a Categorical using a dict specification
In [31]: pd.read_csv(StringIO(data), dtype={"col1": "category"}).dtypes
Out[31]: 
col1    category
col2      object
col3       int64
Length: 3, dtype: object
Note
The resulting categories will always be parsed as strings (object dtype).
If the categories are numeric they can be converted using the
to_numeric() function, or as appropriate, another converter
such as to_datetime().
In [32]: df = pd.read_csv(StringIO(data), dtype="category")
In [33]: df.dtypes
Out[33]: 
col1    category
col2    category
col3    category
Length: 3, dtype: object
In [34]: df["col3"]
Out[34]: 
0    1
1    2
2    3
Name: col3, Length: 3, dtype: category
Categories (3, object): ['1', '2', '3']
In [35]: df["col3"].cat.categories = pd.to_numeric(df["col3"].cat.categories)
In [36]: df["col3"]
Out[36]: 
0    1
1    2
2    3
Name: col3, Length: 3, dtype: category
Categories (3, int64): [1, 2, 3]
Categorical concatenation#
- A function - union_categoricals()has been added for combining categoricals, see Unioning Categoricals (GH13361, GH13763, GH13846, GH14173)- In [37]: from pandas.api.types import union_categoricals In [38]: a = pd.Categorical(["b", "c"]) In [39]: b = pd.Categorical(["a", "b"]) In [40]: union_categoricals([a, b]) Out[40]: ['b', 'c', 'a', 'b'] Categories (3, object): ['b', 'c', 'a'] 
- concatand- appendnow can concat- categorydtypes with different- categoriesas- objectdtype (GH13524)- In [41]: s1 = pd.Series(["a", "b"], dtype="category") In [42]: s2 = pd.Series(["b", "c"], dtype="category") 
Previous behavior:
In [1]: pd.concat([s1, s2])
ValueError: incompatible categories in categorical concat
New behavior:
In [43]: pd.concat([s1, s2])
Out[43]: 
0    a
1    b
0    b
1    c
Length: 4, dtype: object
Semi-month offsets#
pandas has gained new frequency offsets, SemiMonthEnd (‘SM’) and SemiMonthBegin (‘SMS’).
These provide date offsets anchored (by default) to the 15th and end of month, and 15th and 1st of month respectively.
(GH1543)
In [44]: from pandas.tseries.offsets import SemiMonthEnd, SemiMonthBegin
SemiMonthEnd:
In [45]: pd.Timestamp("2016-01-01") + SemiMonthEnd()
Out[45]: Timestamp('2016-01-15 00:00:00')
In [46]: pd.date_range("2015-01-01", freq="SM", periods=4)
Out[46]: DatetimeIndex(['2015-01-15', '2015-01-31', '2015-02-15', '2015-02-28'], dtype='datetime64[ns]', freq='SM-15')
SemiMonthBegin:
In [47]: pd.Timestamp("2016-01-01") + SemiMonthBegin()
Out[47]: Timestamp('2016-01-15 00:00:00')
In [48]: pd.date_range("2015-01-01", freq="SMS", periods=4)
Out[48]: DatetimeIndex(['2015-01-01', '2015-01-15', '2015-02-01', '2015-02-15'], dtype='datetime64[ns]', freq='SMS-15')
Using the anchoring suffix, you can also specify the day of month to use instead of the 15th.
In [49]: pd.date_range("2015-01-01", freq="SMS-16", periods=4)
Out[49]: DatetimeIndex(['2015-01-01', '2015-01-16', '2015-02-01', '2015-02-16'], dtype='datetime64[ns]', freq='SMS-16')
In [50]: pd.date_range("2015-01-01", freq="SM-14", periods=4)
Out[50]: DatetimeIndex(['2015-01-14', '2015-01-31', '2015-02-14', '2015-02-28'], dtype='datetime64[ns]', freq='SM-14')
New Index methods#
The following methods and options are added to Index, to be more consistent with the Series and DataFrame API.
Index now supports the .where() function for same shape indexing (GH13170)
In [51]: idx = pd.Index(["a", "b", "c"])
In [52]: idx.where([True, False, True])
Out[52]: Index(['a', nan, 'c'], dtype='object')
Index now supports .dropna() to exclude missing values (GH6194)
In [53]: idx = pd.Index([1, 2, np.nan, 4])
In [54]: idx.dropna()
Out[54]: Float64Index([1.0, 2.0, 4.0], dtype='float64')
For MultiIndex, values are dropped if any level is missing by default. Specifying
how='all' only drops values where all levels are missing.
In [55]: midx = pd.MultiIndex.from_arrays([[1, 2, np.nan, 4], [1, 2, np.nan, np.nan]])
In [56]: midx
Out[56]: 
MultiIndex([(1.0, 1.0),
            (2.0, 2.0),
            (nan, nan),
            (4.0, nan)],
           )
In [57]: midx.dropna()
Out[57]: 
MultiIndex([(1, 1),
            (2, 2)],
           )
In [58]: midx.dropna(how="all")
Out[58]: 
MultiIndex([(1, 1.0),
            (2, 2.0),
            (4, nan)],
           )
Index now supports .str.extractall() which returns a DataFrame, see the docs here (GH10008, GH13156)
In [59]: idx = pd.Index(["a1a2", "b1", "c1"])
In [60]: idx.str.extractall(r"[ab](?P<digit>\d)")
Out[60]: 
        digit
  match      
0 0         1
  1         2
1 0         1
[3 rows x 1 columns]
Index.astype() now accepts an optional boolean argument copy, which allows optional copying if the requirements on dtype are satisfied (GH13209)
Google BigQuery enhancements#
- The - read_gbq()method has gained the- dialectargument to allow users to specify whether to use BigQuery’s legacy SQL or BigQuery’s standard SQL. See the docs for more details (GH13615).
- The - to_gbq()method now allows the DataFrame column order to differ from the destination table schema (GH11359).
Fine-grained NumPy errstate#
Previous versions of pandas would permanently silence numpy’s ufunc error handling when pandas was imported. pandas did this in order to silence the warnings that would arise from using numpy ufuncs on missing data, which are usually represented as NaN s. Unfortunately, this silenced legitimate warnings arising in non-pandas code in the application. Starting with 0.19.0, pandas will use the numpy.errstate context manager to silence these warnings in a more fine-grained manner, only around where these operations are actually used in the pandas code base. (GH13109, GH13145)
After upgrading pandas, you may see new RuntimeWarnings being issued from your code. These are likely legitimate, and the underlying cause likely existed in the code when using previous versions of pandas that simply silenced the warning. Use numpy.errstate around the source of the RuntimeWarning to control how these conditions are handled.
Method get_dummies now returns integer dtypes#
The pd.get_dummies function now returns dummy-encoded columns as small integers, rather than floats (GH8725). This should provide an improved memory footprint.
Previous behavior:
In [1]: pd.get_dummies(['a', 'b', 'a', 'c']).dtypes
Out[1]:
a    float64
b    float64
c    float64
dtype: object
New behavior:
In [61]: pd.get_dummies(["a", "b", "a", "c"]).dtypes
Out[61]: 
a    uint8
b    uint8
c    uint8
Length: 3, dtype: object
Downcast values to smallest possible dtype in to_numeric#
pd.to_numeric() now accepts a downcast parameter, which will downcast the data if possible to smallest specified numerical dtype (GH13352)
In [62]: s = ["1", 2, 3]
In [63]: pd.to_numeric(s, downcast="unsigned")
Out[63]: array([1, 2, 3], dtype=uint8)
In [64]: pd.to_numeric(s, downcast="integer")
Out[64]: array([1, 2, 3], dtype=int8)
pandas development API#
As part of making pandas API more uniform and accessible in the future, we have created a standard
sub-package of pandas, pandas.api to hold public API’s. We are starting by exposing type
introspection functions in pandas.api.types. More sub-packages and officially sanctioned API’s
will be published in future versions of pandas (GH13147, GH13634)
The following are now part of this API:
In [65]: import pprint
In [66]: from pandas.api import types
In [67]: funcs = [f for f in dir(types) if not f.startswith("_")]
In [68]: pprint.pprint(funcs)
['CategoricalDtype',
 'DatetimeTZDtype',
 'IntervalDtype',
 'PeriodDtype',
 'infer_dtype',
 'is_array_like',
 'is_bool',
 'is_bool_dtype',
 'is_categorical',
 'is_categorical_dtype',
 'is_complex',
 'is_complex_dtype',
 'is_datetime64_any_dtype',
 'is_datetime64_dtype',
 'is_datetime64_ns_dtype',
 'is_datetime64tz_dtype',
 'is_dict_like',
 'is_dtype_equal',
 'is_extension_array_dtype',
 'is_extension_type',
 'is_file_like',
 'is_float',
 'is_float_dtype',
 'is_hashable',
 'is_int64_dtype',
 'is_integer',
 'is_integer_dtype',
 'is_interval',
 'is_interval_dtype',
 'is_iterator',
 'is_list_like',
 'is_named_tuple',
 'is_number',
 'is_numeric_dtype',
 'is_object_dtype',
 'is_period_dtype',
 'is_re',
 'is_re_compilable',
 'is_scalar',
 'is_signed_integer_dtype',
 'is_sparse',
 'is_string_dtype',
 'is_timedelta64_dtype',
 'is_timedelta64_ns_dtype',
 'is_unsigned_integer_dtype',
 'pandas_dtype',
 'union_categoricals']
Note
Calling these functions from the internal module pandas.core.common will now show a DeprecationWarning (GH13990)
Other enhancements#
- Timestampcan now accept positional and keyword parameters similar to- datetime.datetime()(GH10758, GH11630)- In [69]: pd.Timestamp(2012, 1, 1) Out[69]: Timestamp('2012-01-01 00:00:00') In [70]: pd.Timestamp(year=2012, month=1, day=1, hour=8, minute=30) Out[70]: Timestamp('2012-01-01 08:30:00') 
- The - .resample()function now accepts a- on=or- level=parameter for resampling on a datetimelike column or- MultiIndexlevel (GH13500)- In [71]: df = pd.DataFrame( ....: {"date": pd.date_range("2015-01-01", freq="W", periods=5), "a": np.arange(5)}, ....: index=pd.MultiIndex.from_arrays( ....: [[1, 2, 3, 4, 5], pd.date_range("2015-01-01", freq="W", periods=5)], ....: names=["v", "d"], ....: ), ....: ) ....: In [72]: df Out[72]: date a v d 1 2015-01-04 2015-01-04 0 2 2015-01-11 2015-01-11 1 3 2015-01-18 2015-01-18 2 4 2015-01-25 2015-01-25 3 5 2015-02-01 2015-02-01 4 [5 rows x 2 columns] In [73]: df.resample("M", on="date").sum() Out[73]: a date 2015-01-31 6 2015-02-28 4 [2 rows x 1 columns] In [74]: df.resample("M", level="d").sum() Out[74]: a d 2015-01-31 6 2015-02-28 4 [2 rows x 1 columns] 
- The - .get_credentials()method of- GbqConnectorcan now first try to fetch the application default credentials. See the docs for more details (GH13577).
- The - .tz_localize()method of- DatetimeIndexand- Timestamphas gained the- errorskeyword, so you can potentially coerce nonexistent timestamps to- NaT. The default behavior remains to raising a- NonExistentTimeError(GH13057)
- .to_hdf/read_hdf()now accept path objects (e.g.- pathlib.Path,- py.path.local) for the file path (GH11773)
- The - pd.read_csv()with- engine='python'has gained support for the- decimal(GH12933),- na_filter(GH13321) and the- memory_mapoption (GH13381).
- Consistent with the Python API, - pd.read_csv()will now interpret- +infas positive infinity (GH13274)
- The - pd.read_html()has gained support for the- na_values,- converters,- keep_default_naoptions (GH13461)
- Categorical.astype()now accepts an optional boolean argument- copy, effective when dtype is categorical (GH13209)
- DataFramehas gained the- .asof()method to return the last non-NaN values according to the selected subset (GH13358)
- The - DataFrameconstructor will now respect key ordering if a list of- OrderedDictobjects are passed in (GH13304)
- pd.read_html()has gained support for the- decimaloption (GH12907)
- Serieshas gained the properties- .is_monotonic,- .is_monotonic_increasing,- .is_monotonic_decreasing, similar to- Index(GH13336)
- DataFrame.to_sql()now allows a single value as the SQL type for all columns (GH11886).
- Series.appendnow supports the- ignore_indexoption (GH13677)
- .to_stata()and- StataWritercan now write variable labels to Stata dta files using a dictionary to make column names to labels (GH13535, GH13536)
- .to_stata()and- StataWriterwill automatically convert- datetime64[ns]columns to Stata format- %tc, rather than raising a- ValueError(GH12259)
- read_stata()and- StataReaderraise with a more explicit error message when reading Stata files with repeated value labels when- convert_categoricals=True(GH13923)
- DataFrame.stylewill now render sparsified MultiIndexes (GH11655)
- DataFrame.stylewill now show column level names (e.g.- DataFrame.columns.names) (GH13775)
- DataFramehas gained support to re-order the columns based on the values in a row using- df.sort_values(by='...', axis=1)(GH10806)- In [75]: df = pd.DataFrame({"A": [2, 7], "B": [3, 5], "C": [4, 8]}, index=["row1", "row2"]) In [76]: df Out[76]: A B C row1 2 3 4 row2 7 5 8 [2 rows x 3 columns] In [77]: df.sort_values(by="row2", axis=1) Out[77]: B A C row1 3 2 4 row2 5 7 8 [2 rows x 3 columns] 
- Added documentation to I/O regarding the perils of reading in columns with mixed dtypes and how to handle it (GH13746) 
- to_html()now has a- borderargument to control the value in the opening- <table>tag. The default is the value of the- html.borderoption, which defaults to 1. This also affects the notebook HTML repr, but since Jupyter’s CSS includes a border-width attribute, the visual effect is the same. (GH11563).
- Raise - ImportErrorin the sql functions when- sqlalchemyis not installed and a connection string is used (GH11920).
- Compatibility with matplotlib 2.0. Older versions of pandas should also work with matplotlib 2.0 (GH13333) 
- Timestamp,- Period,- DatetimeIndex,- PeriodIndexand- .dtaccessor have gained a- .is_leap_yearproperty to check whether the date belongs to a leap year. (GH13727)
- astype()will now accept a dict of column name to data types mapping as the- dtypeargument. (GH12086)
- The - pd.read_jsonand- DataFrame.to_jsonhas gained support for reading and writing json lines with- linesoption see Line delimited json (GH9180)
- read_excel()now supports the true_values and false_values keyword arguments (GH13347)
- groupby()will now accept a scalar and a single-element list for specifying- levelon a non-- MultiIndexgrouper. (GH13907)
- Non-convertible dates in an excel date column will be returned without conversion and the column will be - objectdtype, rather than raising an exception (GH10001).
- pd.Timedelta(None)is now accepted and will return- NaT, mirroring- pd.Timestamp(GH13687)
- pd.read_stata()can now handle some format 111 files, which are produced by SAS when generating Stata dta files (GH11526)
- Seriesand- Indexnow support- divmodwhich will return a tuple of series or indices. This behaves like a standard binary operator with regards to broadcasting rules (GH14208).
API changes#
Series.tolist() will now return Python types#
Series.tolist() will now return Python types in the output, mimicking NumPy .tolist() behavior (GH10904)
In [78]: s = pd.Series([1, 2, 3])
Previous behavior:
In [7]: type(s.tolist()[0])
Out[7]:
 <class 'numpy.int64'>
New behavior:
In [79]: type(s.tolist()[0])
Out[79]: int
Series operators for different indexes#
Following Series operators have been changed to make all operators consistent,
including DataFrame (GH1134, GH4581, GH13538)
- Seriescomparison operators now raise- ValueErrorwhen- indexare different.
- Serieslogical operators align both- indexof left and right hand side.
Warning
Until 0.18.1, comparing Series with the same length, would succeed even if
the .index are different (the result ignores .index). As of 0.19.0, this will raises ValueError to be more strict. This section also describes how to keep previous behavior or align different indexes, using the flexible comparison methods like .eq.
As a result, Series and DataFrame operators behave as below:
Arithmetic operators#
Arithmetic operators align both index (no changes).
In [80]: s1 = pd.Series([1, 2, 3], index=list("ABC"))
In [81]: s2 = pd.Series([2, 2, 2], index=list("ABD"))
In [82]: s1 + s2
Out[82]: 
A    3.0
B    4.0
C    NaN
D    NaN
Length: 4, dtype: float64
In [83]: df1 = pd.DataFrame([1, 2, 3], index=list("ABC"))
In [84]: df2 = pd.DataFrame([2, 2, 2], index=list("ABD"))
In [85]: df1 + df2
Out[85]: 
     0
A  3.0
B  4.0
C  NaN
D  NaN
[4 rows x 1 columns]
Comparison operators#
Comparison operators raise ValueError when .index are different.
Previous behavior (Series):
Series compared values ignoring the .index as long as both had the same length:
In [1]: s1 == s2
Out[1]:
A    False
B     True
C    False
dtype: bool
New behavior (Series):
In [2]: s1 == s2
Out[2]:
ValueError: Can only compare identically-labeled Series objects
Note
To achieve the same result as previous versions (compare values based on locations ignoring .index), compare both .values.
In [86]: s1.values == s2.values
Out[86]: array([False,  True, False])
If you want to compare Series aligning its .index, see flexible comparison methods section below:
In [87]: s1.eq(s2)
Out[87]: 
A    False
B     True
C    False
D    False
Length: 4, dtype: bool
Current behavior (DataFrame, no change):
In [3]: df1 == df2
Out[3]:
ValueError: Can only compare identically-labeled DataFrame objects
Logical operators#
Logical operators align both .index of left and right hand side.
Previous behavior (Series), only left hand side index was kept:
In [4]: s1 = pd.Series([True, False, True], index=list('ABC'))
In [5]: s2 = pd.Series([True, True, True], index=list('ABD'))
In [6]: s1 & s2
Out[6]:
A     True
B    False
C    False
dtype: bool
New behavior (Series):
In [88]: s1 = pd.Series([True, False, True], index=list("ABC"))
In [89]: s2 = pd.Series([True, True, True], index=list("ABD"))
In [90]: s1 & s2
Out[90]: 
A     True
B    False
C    False
D    False
Length: 4, dtype: bool
Note
Series logical operators fill a NaN result with False.
Note
To achieve the same result as previous versions (compare values based on only left hand side index), you can use reindex_like:
In [91]: s1 & s2.reindex_like(s1)
Out[91]: 
A     True
B    False
C    False
Length: 3, dtype: bool
Current behavior (DataFrame, no change):
In [92]: df1 = pd.DataFrame([True, False, True], index=list("ABC"))
In [93]: df2 = pd.DataFrame([True, True, True], index=list("ABD"))
In [94]: df1 & df2
Out[94]: 
       0
A   True
B  False
C  False
D  False
[4 rows x 1 columns]
Flexible comparison methods#
Series flexible comparison methods like eq, ne, le, lt, ge and gt now align both index. Use these operators if you want to compare two Series
which has the different index.
In [95]: s1 = pd.Series([1, 2, 3], index=["a", "b", "c"])
In [96]: s2 = pd.Series([2, 2, 2], index=["b", "c", "d"])
In [97]: s1.eq(s2)
Out[97]: 
a    False
b     True
c    False
d    False
Length: 4, dtype: bool
In [98]: s1.ge(s2)
Out[98]: 
a    False
b     True
c     True
d    False
Length: 4, dtype: bool
Previously, this worked the same as comparison operators (see above).
Series type promotion on assignment#
A Series will now correctly promote its dtype for assignment with incompat values to the current dtype (GH13234)
In [99]: s = pd.Series()
Previous behavior:
In [2]: s["a"] = pd.Timestamp("2016-01-01")
In [3]: s["b"] = 3.0
TypeError: invalid type promotion
New behavior:
In [100]: s["a"] = pd.Timestamp("2016-01-01")
In [101]: s["b"] = 3.0
In [102]: s
Out[102]: 
a    2016-01-01 00:00:00
b                    3.0
Length: 2, dtype: object
In [103]: s.dtype
Out[103]: dtype('O')
Function .to_datetime() changes#
Previously if .to_datetime() encountered mixed integers/floats and strings, but no datetimes with errors='coerce' it would convert all to NaT.
Previous behavior:
In [2]: pd.to_datetime([1, 'foo'], errors='coerce')
Out[2]: DatetimeIndex(['NaT', 'NaT'], dtype='datetime64[ns]', freq=None)
Current behavior:
This will now convert integers/floats with the default unit of ns.
In [104]: pd.to_datetime([1, "foo"], errors="coerce")
Out[104]: DatetimeIndex(['1970-01-01 00:00:00.000000001', 'NaT'], dtype='datetime64[ns]', freq=None)
Bug fixes related to .to_datetime():
- Bug in - pd.to_datetime()when passing integers or floats, and no- unitand- errors='coerce'(GH13180).
- Bug in - pd.to_datetime()when passing invalid data types (e.g. bool); will now respect the- errorskeyword (GH13176)
- Bug in - pd.to_datetime()which overflowed on- int8, and- int16dtypes (GH13451)
- Bug in - pd.to_datetime()raise- AttributeErrorwith- NaNand the other string is not valid when- errors='ignore'(GH12424)
- Bug in - pd.to_datetime()did not cast floats correctly when- unitwas specified, resulting in truncated datetime (GH13834)
Merging changes#
Merging will now preserve the dtype of the join keys (GH8596)
In [105]: df1 = pd.DataFrame({"key": [1], "v1": [10]})
In [106]: df1
Out[106]: 
   key  v1
0    1  10
[1 rows x 2 columns]
In [107]: df2 = pd.DataFrame({"key": [1, 2], "v1": [20, 30]})
In [108]: df2
Out[108]: 
   key  v1
0    1  20
1    2  30
[2 rows x 2 columns]
Previous behavior:
In [5]: pd.merge(df1, df2, how='outer')
Out[5]:
   key    v1
0  1.0  10.0
1  1.0  20.0
2  2.0  30.0
In [6]: pd.merge(df1, df2, how='outer').dtypes
Out[6]:
key    float64
v1     float64
dtype: object
New behavior:
We are able to preserve the join keys
In [109]: pd.merge(df1, df2, how="outer")
Out[109]: 
   key  v1
0    1  10
1    1  20
2    2  30
[3 rows x 2 columns]
In [110]: pd.merge(df1, df2, how="outer").dtypes
Out[110]: 
key    int64
v1     int64
Length: 2, dtype: object
Of course if you have missing values that are introduced, then the resulting dtype will be upcast, which is unchanged from previous.
In [111]: pd.merge(df1, df2, how="outer", on="key")
Out[111]: 
   key  v1_x  v1_y
0    1  10.0    20
1    2   NaN    30
[2 rows x 3 columns]
In [112]: pd.merge(df1, df2, how="outer", on="key").dtypes
Out[112]: 
key       int64
v1_x    float64
v1_y      int64
Length: 3, dtype: object
Method .describe() changes#
Percentile identifiers in the index of a .describe() output will now be rounded to the least precision that keeps them distinct (GH13104)
In [113]: s = pd.Series([0, 1, 2, 3, 4])
In [114]: df = pd.DataFrame([0, 1, 2, 3, 4])
Previous behavior:
The percentiles were rounded to at most one decimal place, which could raise ValueError for a data frame if the percentiles were duplicated.
In [3]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[3]:
count     5.000000
mean      2.000000
std       1.581139
min       0.000000
0.0%      0.000400
0.1%      0.002000
0.1%      0.004000
50%       2.000000
99.9%     3.996000
100.0%    3.998000
100.0%    3.999600
max       4.000000
dtype: float64
In [4]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[4]:
...
ValueError: cannot reindex from a duplicate axis
New behavior:
In [115]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[115]: 
count     5.000000
mean      2.000000
std       1.581139
min       0.000000
0.01%     0.000400
0.05%     0.002000
0.1%      0.004000
50%       2.000000
99.9%     3.996000
99.95%    3.998000
99.99%    3.999600
max       4.000000
Length: 12, dtype: float64
In [116]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[116]: 
               0
count   5.000000
mean    2.000000
std     1.581139
min     0.000000
0.01%   0.000400
0.05%   0.002000
0.1%    0.004000
50%     2.000000
99.9%   3.996000
99.95%  3.998000
99.99%  3.999600
max     4.000000
[12 rows x 1 columns]
Furthermore:
- Passing duplicated - percentileswill now raise a- ValueError.
- Bug in - .describe()on a DataFrame with a mixed-dtype column index, which would previously raise a- TypeError(GH13288)
Period changes#
The PeriodIndex now has period dtype#
PeriodIndex now has its own period dtype. The period dtype is a
pandas extension dtype like category or the timezone aware dtype (datetime64[ns, tz]) (GH13941).
As a consequence of this change, PeriodIndex no longer has an integer dtype:
Previous behavior:
In [1]: pi = pd.PeriodIndex(['2016-08-01'], freq='D')
In [2]: pi
Out[2]: PeriodIndex(['2016-08-01'], dtype='int64', freq='D')
In [3]: pd.api.types.is_integer_dtype(pi)
Out[3]: True
In [4]: pi.dtype
Out[4]: dtype('int64')
New behavior:
In [117]: pi = pd.PeriodIndex(["2016-08-01"], freq="D")
In [118]: pi
Out[118]: PeriodIndex(['2016-08-01'], dtype='period[D]')
In [119]: pd.api.types.is_integer_dtype(pi)
Out[119]: False
In [120]: pd.api.types.is_period_dtype(pi)
Out[120]: True
In [121]: pi.dtype
Out[121]: period[D]
In [122]: type(pi.dtype)
Out[122]: pandas.core.dtypes.dtypes.PeriodDtype
Period('NaT') now returns pd.NaT#
Previously, Period has its own Period('NaT') representation different from pd.NaT. Now Period('NaT') has been changed to return pd.NaT. (GH12759, GH13582)
Previous behavior:
In [5]: pd.Period('NaT', freq='D')
Out[5]: Period('NaT', 'D')
New behavior:
These result in pd.NaT without providing freq option.
In [123]: pd.Period("NaT")
Out[123]: NaT
In [124]: pd.Period(None)
Out[124]: NaT
To be compatible with Period addition and subtraction, pd.NaT now supports addition and subtraction with int. Previously it raised ValueError.
Previous behavior:
In [5]: pd.NaT + 1
...
ValueError: Cannot add integral value to Timestamp without freq.
New behavior:
In [125]: pd.NaT + 1
Out[125]: NaT
In [126]: pd.NaT - 1
Out[126]: NaT
PeriodIndex.values now returns array of Period object#
.values is changed to return an array of Period objects, rather than an array
of integers (GH13988).
Previous behavior:
In [6]: pi = pd.PeriodIndex(['2011-01', '2011-02'], freq='M')
In [7]: pi.values
Out[7]: array([492, 493])
New behavior:
In [127]: pi = pd.PeriodIndex(["2011-01", "2011-02"], freq="M")
In [128]: pi.values
Out[128]: array([Period('2011-01', 'M'), Period('2011-02', 'M')], dtype=object)
Index + / - no longer used for set operations#
Addition and subtraction of the base Index type and of DatetimeIndex
(not the numeric index types)
previously performed set operations (set union and difference). This
behavior was already deprecated since 0.15.0 (in favor using the specific
.union() and .difference() methods), and is now disabled. When
possible, + and - are now used for element-wise operations, for
example for concatenating strings or subtracting datetimes
(GH8227, GH14127).
Previous behavior:
In [1]: pd.Index(['a', 'b']) + pd.Index(['a', 'c'])
FutureWarning: using '+' to provide set union with Indexes is deprecated, use '|' or .union()
Out[1]: Index(['a', 'b', 'c'], dtype='object')
New behavior: the same operation will now perform element-wise addition:
In [129]: pd.Index(["a", "b"]) + pd.Index(["a", "c"])
Out[129]: Index(['aa', 'bc'], dtype='object')
Note that numeric Index objects already performed element-wise operations.
For example, the behavior of adding two integer Indexes is unchanged.
The base Index is now made consistent with this behavior.
In [130]: pd.Index([1, 2, 3]) + pd.Index([2, 3, 4])
Out[130]: Int64Index([3, 5, 7], dtype='int64')
Further, because of this change, it is now possible to subtract two DatetimeIndex objects resulting in a TimedeltaIndex:
Previous behavior:
In [1]: (pd.DatetimeIndex(['2016-01-01', '2016-01-02'])
   ...:  - pd.DatetimeIndex(['2016-01-02', '2016-01-03']))
FutureWarning: using '-' to provide set differences with datetimelike Indexes is deprecated, use .difference()
Out[1]: DatetimeIndex(['2016-01-01'], dtype='datetime64[ns]', freq=None)
New behavior:
In [131]: (
   .....:     pd.DatetimeIndex(["2016-01-01", "2016-01-02"])
   .....:     - pd.DatetimeIndex(["2016-01-02", "2016-01-03"])
   .....: )
   .....: 
Out[131]: TimedeltaIndex(['-1 days', '-1 days'], dtype='timedelta64[ns]', freq=None)
Index.difference and .symmetric_difference changes#
Index.difference and Index.symmetric_difference will now, more consistently, treat NaN values as any other values. (GH13514)
In [132]: idx1 = pd.Index([1, 2, 3, np.nan])
In [133]: idx2 = pd.Index([0, 1, np.nan])
Previous behavior:
In [3]: idx1.difference(idx2)
Out[3]: Float64Index([nan, 2.0, 3.0], dtype='float64')
In [4]: idx1.symmetric_difference(idx2)
Out[4]: Float64Index([0.0, nan, 2.0, 3.0], dtype='float64')
New behavior:
In [134]: idx1.difference(idx2)
Out[134]: Float64Index([2.0, 3.0], dtype='float64')
In [135]: idx1.symmetric_difference(idx2)
Out[135]: Float64Index([0.0, 2.0, 3.0], dtype='float64')
Index.unique consistently returns Index#
Index.unique() now returns unique values as an
Index of the appropriate dtype. (GH13395).
Previously, most Index classes returned np.ndarray, and DatetimeIndex,
TimedeltaIndex and PeriodIndex returned Index to keep metadata like timezone.
Previous behavior:
In [1]: pd.Index([1, 2, 3]).unique()
Out[1]: array([1, 2, 3])
In [2]: pd.DatetimeIndex(['2011-01-01', '2011-01-02',
   ...:                   '2011-01-03'], tz='Asia/Tokyo').unique()
Out[2]:
DatetimeIndex(['2011-01-01 00:00:00+09:00', '2011-01-02 00:00:00+09:00',
               '2011-01-03 00:00:00+09:00'],
              dtype='datetime64[ns, Asia/Tokyo]', freq=None)
New behavior:
In [136]: pd.Index([1, 2, 3]).unique()
Out[136]: Int64Index([1, 2, 3], dtype='int64')
In [137]: pd.DatetimeIndex(
   .....:     ["2011-01-01", "2011-01-02", "2011-01-03"], tz="Asia/Tokyo"
   .....: ).unique()
   .....: 
Out[137]: 
DatetimeIndex(['2011-01-01 00:00:00+09:00', '2011-01-02 00:00:00+09:00',
               '2011-01-03 00:00:00+09:00'],
              dtype='datetime64[ns, Asia/Tokyo]', freq=None)
MultiIndex constructors, groupby and set_index preserve categorical dtypes#
MultiIndex.from_arrays and MultiIndex.from_product will now preserve categorical dtype
in MultiIndex levels (GH13743, GH13854).
In [138]: cat = pd.Categorical(["a", "b"], categories=list("bac"))
In [139]: lvl1 = ["foo", "bar"]
In [140]: midx = pd.MultiIndex.from_arrays([cat, lvl1])
In [141]: midx
Out[141]: 
MultiIndex([('a', 'foo'),
            ('b', 'bar')],
           )
Previous behavior:
In [4]: midx.levels[0]
Out[4]: Index(['b', 'a', 'c'], dtype='object')
In [5]: midx.get_level_values[0]
Out[5]: Index(['a', 'b'], dtype='object')
New behavior: the single level is now a CategoricalIndex:
In [142]: midx.levels[0]
Out[142]: CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'], ordered=False, dtype='category')
In [143]: midx.get_level_values(0)
Out[143]: CategoricalIndex(['a', 'b'], categories=['b', 'a', 'c'], ordered=False, dtype='category')
An analogous change has been made to MultiIndex.from_product.
As a consequence, groupby and set_index also preserve categorical dtypes in indexes
In [144]: df = pd.DataFrame({"A": [0, 1], "B": [10, 11], "C": cat})
In [145]: df_grouped = df.groupby(by=["A", "C"]).first()
In [146]: df_set_idx = df.set_index(["A", "C"])
Previous behavior:
In [11]: df_grouped.index.levels[1]
Out[11]: Index(['b', 'a', 'c'], dtype='object', name='C')
In [12]: df_grouped.reset_index().dtypes
Out[12]:
A      int64
C     object
B    float64
dtype: object
In [13]: df_set_idx.index.levels[1]
Out[13]: Index(['b', 'a', 'c'], dtype='object', name='C')
In [14]: df_set_idx.reset_index().dtypes
Out[14]:
A      int64
C     object
B      int64
dtype: object
New behavior:
In [147]: df_grouped.index.levels[1]
Out[147]: CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'], ordered=False, dtype='category', name='C')
In [148]: df_grouped.reset_index().dtypes
Out[148]: 
A       int64
C    category
B     float64
Length: 3, dtype: object
In [149]: df_set_idx.index.levels[1]
Out[149]: CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'], ordered=False, dtype='category', name='C')
In [150]: df_set_idx.reset_index().dtypes
Out[150]: 
A       int64
C    category
B       int64
Length: 3, dtype: object
Function read_csv will progressively enumerate chunks#
When read_csv() is called with chunksize=n and without specifying an index,
each chunk used to have an independently generated index from 0 to n-1.
They are now given instead a progressive index, starting from 0 for the first chunk,
from n for the second, and so on, so that, when concatenated, they are identical to
the result of calling read_csv() without the chunksize= argument
(GH12185).
In [151]: data = "A,B\n0,1\n2,3\n4,5\n6,7"
Previous behavior:
In [2]: pd.concat(pd.read_csv(StringIO(data), chunksize=2))
Out[2]:
   A  B
0  0  1
1  2  3
0  4  5
1  6  7
New behavior:
In [152]: pd.concat(pd.read_csv(StringIO(data), chunksize=2))
Out[152]: 
   A  B
0  0  1
1  2  3
2  4  5
3  6  7
[4 rows x 2 columns]
Sparse changes#
These changes allow pandas to handle sparse data with more dtypes, and for work to make a smoother experience with data handling.
Types int64 and bool support enhancements#
Sparse data structures now gained enhanced support of int64 and bool dtype (GH667, GH13849).
Previously, sparse data were float64 dtype by default, even if all inputs were of int or bool dtype. You had to specify dtype explicitly to create sparse data with int64 dtype. Also, fill_value had to be specified explicitly because the default was np.nan which doesn’t appear in int64 or bool data.
In [1]: pd.SparseArray([1, 2, 0, 0])
Out[1]:
[1.0, 2.0, 0.0, 0.0]
Fill: nan
IntIndex
Indices: array([0, 1, 2, 3], dtype=int32)
# specifying int64 dtype, but all values are stored in sp_values because
# fill_value default is np.nan
In [2]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64)
Out[2]:
[1, 2, 0, 0]
Fill: nan
IntIndex
Indices: array([0, 1, 2, 3], dtype=int32)
In [3]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64, fill_value=0)
Out[3]:
[1, 2, 0, 0]
Fill: 0
IntIndex
Indices: array([0, 1], dtype=int32)
As of v0.19.0, sparse data keeps the input dtype, and uses more appropriate fill_value defaults (0 for int64 dtype, False for bool dtype).
In [153]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64)
Out[153]: 
[1, 2, 0, 0]
Fill: 0
IntIndex
Indices: array([0, 1], dtype=int32)
In [154]: pd.SparseArray([True, False, False, False])
Out[154]: 
[True, False, False, False]
Fill: False
IntIndex
Indices: array([0], dtype=int32)
See the docs for more details.
Operators now preserve dtypes#
- Sparse data structure now can preserve - dtypeafter arithmetic ops (GH13848)
s = pd.SparseSeries([0, 2, 0, 1], fill_value=0, dtype=np.int64)
s.dtype
s + 1
- Sparse data structure now support - astypeto convert internal- dtype(GH13900)
s = pd.SparseSeries([1.0, 0.0, 2.0, 0.0], fill_value=0)
s
s.astype(np.int64)
astype fails if data contains values which cannot be converted to specified dtype.
Note that the limitation is applied to fill_value which default is np.nan.
In [7]: pd.SparseSeries([1., np.nan, 2., np.nan], fill_value=np.nan).astype(np.int64)
Out[7]:
ValueError: unable to coerce current fill_value nan to int64 dtype
Other sparse fixes#
- Subclassed - SparseDataFrameand- SparseSeriesnow preserve class types when slicing or transposing. (GH13787)
- SparseArraywith- booldtype now supports logical (bool) operators (GH14000)
- Bug in - SparseSerieswith- MultiIndex- []indexing may raise- IndexError(GH13144)
- Bug in - SparseSerieswith- MultiIndex- []indexing result may have normal- Index(GH13144)
- Bug in - SparseDataFramein which- axis=Nonedid not default to- axis=0(GH13048)
- Bug in - SparseSeriesand- SparseDataFramecreation with- objectdtype may raise- TypeError(GH11633)
- Bug in - SparseDataFramedoesn’t respect passed- SparseArrayor- SparseSeries‘s dtype and- fill_value(GH13866)
- Bug in - SparseArrayand- SparseSeriesdon’t apply ufunc to- fill_value(GH13853)
- Bug in - SparseSeries.absincorrectly keeps negative- fill_value(GH13853)
- Bug in single row slicing on multi-type - SparseDataFrames, types were previously forced to float (GH13917)
- Bug in - SparseSeriesslicing changes integer dtype to float (GH8292)
- Bug in - SparseDataFarmecomparison ops may raise- TypeError(GH13001)
- Bug in - SparseDataFarme.isnullraises- ValueError(GH8276)
- Bug in - SparseSeriesrepresentation with- booldtype may raise- IndexError(GH13110)
- Bug in - SparseSeriesand- SparseDataFrameof- boolor- int64dtype may display its values like- float64dtype (GH13110)
- Bug in sparse indexing using - SparseArraywith- booldtype may return incorrect result (GH13985)
- Bug in - SparseArraycreated from- SparseSeriesmay lose- dtype(GH13999)
- Bug in - SparseSeriescomparison with dense returns normal- Seriesrather than- SparseSeries(GH13999)
Indexer dtype changes#
Note
This change only affects 64 bit python running on Windows, and only affects relatively advanced indexing operations
Methods such as Index.get_indexer that return an indexer array, coerce that array to a “platform int”, so that it can be
directly used in 3rd party library operations like numpy.take.  Previously, a platform int was defined as np.int_
which corresponds to a C integer, but the correct type, and what is being used now, is np.intp, which corresponds
to the C integer size that can hold a pointer (GH3033, GH13972).
These types are the same on many platform, but for 64 bit python on Windows,
np.int_ is 32 bits, and np.intp is 64 bits.  Changing this behavior improves performance for many
operations on that platform.
Previous behavior:
In [1]: i = pd.Index(['a', 'b', 'c'])
In [2]: i.get_indexer(['b', 'b', 'c']).dtype
Out[2]: dtype('int32')
New behavior:
In [1]: i = pd.Index(['a', 'b', 'c'])
In [2]: i.get_indexer(['b', 'b', 'c']).dtype
Out[2]: dtype('int64')
Other API changes#
- Timestamp.to_pydatetimewill issue a- UserWarningwhen- warn=True, and the instance has a non-zero number of nanoseconds, previously this would print a message to stdout (GH14101).
- Series.unique()with datetime and timezone now returns return array of- Timestampwith timezone (GH13565).
- Panel.to_sparse()will raise a- NotImplementedErrorexception when called (GH13778).
- Index.reshape()will raise a- NotImplementedErrorexception when called (GH12882).
- .filter()enforces mutual exclusion of the keyword arguments (GH12399).
- eval’s upcasting rules for- float32types have been updated to be more consistent with NumPy’s rules. New behavior will not upcast to- float64if you multiply a pandas- float32object by a scalar float64 (GH12388).
- An - UnsupportedFunctionCallerror is now raised if NumPy ufuncs like- np.meanare called on groupby or resample objects (GH12811).
- __setitem__will no longer apply a callable rhs as a function instead of storing it. Call- wheredirectly to get the previous behavior (GH13299).
- Calls to - .sample()will respect the random seed set via- numpy.random.seed(n)(GH13161)
- Styler.applyis now more strict about the outputs your function must return. For- axis=0or- axis=1, the output shape must be identical. For- axis=None, the output must be a DataFrame with identical columns and index labels (GH13222).
- Float64Index.astype(int)will now raise- ValueErrorif- Float64Indexcontains- NaNvalues (GH13149)
- TimedeltaIndex.astype(int)and- DatetimeIndex.astype(int)will now return- Int64Indexinstead of- np.array(GH13209)
- Passing - Periodwith multiple frequencies to normal- Indexnow returns- Indexwith- objectdtype (GH13664)
- PeriodIndex.fillnawith- Periodhas different freq now coerces to- objectdtype (GH13664)
- Faceted boxplots from - DataFrame.boxplot(by=col)now return a- Serieswhen- return_typeis not None. Previously these returned an- OrderedDict. Note that when- return_type=None, the default, these still return a 2-D NumPy array (GH12216, GH7096).
- pd.read_hdfwill now raise a- ValueErrorinstead of- KeyError, if a mode other than- r,- r+and- ais supplied. (GH13623)
- pd.read_csv(),- pd.read_table(), and- pd.read_hdf()raise the builtin- FileNotFoundErrorexception for Python 3.x when called on a nonexistent file; this is back-ported as- IOErrorin Python 2.x (GH14086)
- More informative exceptions are passed through the csv parser. The exception type would now be the original exception type instead of - CParserError(GH13652).
- pd.read_csv()in the C engine will now issue a- ParserWarningor raise a- ValueErrorwhen- sepencoded is more than one character long (GH14065)
- DataFrame.valueswill now return- float64with a- DataFrameof mixed- int64and- uint64dtypes, conforming to- np.find_common_type(GH10364, GH13917)
- .groupby.groupswill now return a dictionary of- Indexobjects, rather than a dictionary of- np.ndarrayor- lists(GH14293)
Deprecations#
- Series.reshapeand- Categorical.reshapehave been deprecated and will be removed in a subsequent release (GH12882, GH12882)
- PeriodIndex.to_datetimehas been deprecated in favor of- PeriodIndex.to_timestamp(GH8254)
- Timestamp.to_datetimehas been deprecated in favor of- Timestamp.to_pydatetime(GH8254)
- Index.to_datetimeand- DatetimeIndex.to_datetimehave been deprecated in favor of- pd.to_datetime(GH8254)
- pandas.core.datetoolsmodule has been deprecated and will be removed in a subsequent release (GH14094)
- SparseListhas been deprecated and will be removed in a future version (GH13784)
- DataFrame.to_html()and- DataFrame.to_latex()have dropped the- colSpaceparameter in favor of- col_space(GH13857)
- DataFrame.to_sql()has deprecated the- flavorparameter, as it is superfluous when SQLAlchemy is not installed (GH13611)
- Deprecated - read_csvkeywords:- compact_intsand- use_unsignedhave been deprecated and will be removed in a future version (GH13320)
- buffer_lineshas been deprecated and will be removed in a future version (GH13360)
- as_recarrayhas been deprecated and will be removed in a future version (GH13373)
- skip_footerhas been deprecated in favor of- skipfooterand will be removed in a future version (GH13349)
 
- top-level - pd.ordered_merge()has been renamed to- pd.merge_ordered()and the original name will be removed in a future version (GH13358)
- Timestamp.offsetproperty (and named arg in the constructor), has been deprecated in favor of- freq(GH12160)
- pd.tseries.util.pivot_annualis deprecated. Use- pivot_tableas alternative, an example is here (GH736)
- pd.tseries.util.isleapyearhas been deprecated and will be removed in a subsequent release. Datetime-likes now have a- .is_leap_yearproperty (GH13727)
- Panel4Dand- PanelNDconstructors are deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the xarray package. pandas provides a- to_xarray()method to automate this conversion (GH13564).
- pandas.tseries.frequencies.get_standard_freqis deprecated. Use- pandas.tseries.frequencies.to_offset(freq).rule_codeinstead (GH13874)
- pandas.tseries.frequencies.to_offset’s- freqstrkeyword is deprecated in favor of- freq(GH13874)
- Categorical.from_arrayhas been deprecated and will be removed in a future version (GH13854)
Removal of prior version deprecations/changes#
- The - SparsePanelclass has been removed (GH13778)
- The - pd.sandboxmodule has been removed in favor of the external library- pandas-qt(GH13670)
- The - pandas.io.dataand- pandas.io.wbmodules are removed in favor of the pandas-datareader package (GH13724).
- The - pandas.tools.rplotmodule has been removed in favor of the seaborn package (GH13855)
- DataFrame.to_csv()has dropped the- engineparameter, as was deprecated in 0.17.1 (GH11274, GH13419)
- DataFrame.to_dict()has dropped the- outtypeparameter in favor of- orient(GH13627, GH8486)
- pd.Categoricalhas dropped setting of the- orderedattribute directly in favor of the- set_orderedmethod (GH13671)
- pd.Categoricalhas dropped the- levelsattribute in favor of- categories(GH8376)
- DataFrame.to_sql()has dropped the- mysqloption for the- flavorparameter (GH13611)
- Panel.shift()has dropped the- lagsparameter in favor of- periods(GH14041)
- pd.Indexhas dropped the- diffmethod in favor of- difference(GH13669)
- pd.DataFramehas dropped the- to_widemethod in favor of- to_panel(GH14039)
- Series.to_csvhas dropped the- nanRepparameter in favor of- na_rep(GH13804)
- Series.xs,- DataFrame.xs,- Panel.xs,- Panel.major_xs, and- Panel.minor_xshave dropped the- copyparameter (GH13781)
- str.splithas dropped the- return_typeparameter in favor of- expand(GH13701)
- Removal of the legacy time rules (offset aliases), deprecated since 0.17.0 (this has been alias since 0.8.0) (GH13590, GH13868). Now legacy time rules raises - ValueError. For the list of currently supported offsets, see here.
- The default value for the - return_typeparameter for- DataFrame.plot.boxand- DataFrame.boxplotchanged from- Noneto- "axes". These methods will now return a matplotlib axes by default instead of a dictionary of artists. See here (GH6581).
- The - tqueryand- uqueryfunctions in the- pandas.io.sqlmodule are removed (GH5950).
Performance improvements#
- Improved performance of sparse - IntIndex.intersect(GH13082)
- Improved performance of sparse arithmetic with - BlockIndexwhen the number of blocks are large, though recommended to use- IntIndexin such cases (GH13082)
- Improved performance of - DataFrame.quantile()as it now operates per-block (GH11623)
- Improved performance of float64 hash table operations, fixing some very slow indexing and groupby operations in python 3 (GH13166, GH13334) 
- Improved performance of - DataFrameGroupBy.transform(GH12737)
- Improved performance of - Indexand- Series- .duplicated(GH10235)
- Improved performance of - Index.difference(GH12044)
- Improved performance of - RangeIndex.is_monotonic_increasingand- is_monotonic_decreasing(GH13749)
- Improved performance of datetime string parsing in - DatetimeIndex(GH13692)
- Improved performance of hashing - Period(GH12817)
- Improved performance of - factorizeof datetime with timezone (GH13750)
- Improved performance of by lazily creating indexing hashtables on larger Indexes (GH14266) 
- Improved performance of - groupby.groups(GH14293)
- Unnecessary materializing of a MultiIndex when introspecting for memory usage (GH14308) 
Bug fixes#
- Bug in - groupby().shift(), which could cause a segfault or corruption in rare circumstances when grouping by columns with missing values (GH13813)
- Bug in - groupby().cumsum()calculating- cumprodwhen- axis=1. (GH13994)
- Bug in - pd.to_timedelta()in which the- errorsparameter was not being respected (GH13613)
- Bug in - io.json.json_normalize(), where non-ascii keys raised an exception (GH13213)
- Bug when passing a not-default-indexed - Seriesas- xerror- yerrin- .plot()(GH11858)
- Bug in area plot draws legend incorrectly if subplot is enabled or legend is moved after plot (matplotlib 1.5.0 is required to draw area plot legend properly) (GH9161, GH13544) 
- Bug in - DataFrameassignment with an object-dtyped- Indexwhere the resultant column is mutable to the original object. (GH13522)
- Bug in matplotlib - AutoDataFormatter; this restores the second scaled formatting and re-adds micro-second scaled formatting (GH13131)
- Bug in selection from a - HDFStorewith a fixed format and- startand/or- stopspecified will now return the selected range (GH8287)
- Bug in - Categorical.from_codes()where an unhelpful error was raised when an invalid- orderedparameter was passed in (GH14058)
- Bug in - Seriesconstruction from a tuple of integers on windows not returning default dtype (int64) (GH13646)
- Bug in - TimedeltaIndexaddition with a Datetime-like object where addition overflow was not being caught (GH14068)
- Bug in - .groupby(..).resample(..)when the same object is called multiple times (GH13174)
- Bug in - .to_records()when index name is a unicode string (GH13172)
- Bug in calling - .memory_usage()on object which doesn’t implement (GH12924)
- Regression in - Series.quantilewith nans (also shows up in- .median()and- .describe()); furthermore now names the- Serieswith the quantile (GH13098, GH13146)
- Bug in - SeriesGroupBy.transformwith datetime values and missing groups (GH13191)
- Bug where empty - Serieswere incorrectly coerced in datetime-like numeric operations (GH13844)
- Bug in - Categoricalconstructor when passed a- Categoricalcontaining datetimes with timezones (GH14190)
- Bug in - Series.str.extractall()with- strindex raises- ValueError(GH13156)
- Bug in - Series.str.extractall()with single group and quantifier (GH13382)
- Bug in - DatetimeIndexand- Periodsubtraction raises- ValueErroror- AttributeErrorrather than- TypeError(GH13078)
- Bug in - Indexand- Seriescreated with- NaNand- NaTmixed data may not have- datetime64dtype (GH13324)
- Bug in - Indexand- Seriesmay ignore- np.datetime64('nat')and- np.timdelta64('nat')to infer dtype (GH13324)
- Bug in - PeriodIndexand- Periodsubtraction raises- AttributeError(GH13071)
- Bug in - PeriodIndexconstruction returning a- float64index in some circumstances (GH13067)
- Bug in - .resample(..)with a- PeriodIndexnot changing its- freqappropriately when empty (GH13067)
- Bug in - .resample(..)with a- PeriodIndexnot retaining its type or name with an empty- DataFrameappropriately when empty (GH13212)
- Bug in - groupby(..).apply(..)when the passed function returns scalar values per group (GH13468).
- Bug in - groupby(..).resample(..)where passing some keywords would raise an exception (GH13235)
- Bug in - .tz_converton a tz-aware- DateTimeIndexthat relied on index being sorted for correct results (GH13306)
- Bug in - .tz_localizewith- dateutil.tz.tzlocalmay return incorrect result (GH13583)
- Bug in - DatetimeTZDtypedtype with- dateutil.tz.tzlocalcannot be regarded as valid dtype (GH13583)
- Bug in - pd.read_hdf()where attempting to load an HDF file with a single dataset, that had one or more categorical columns, failed unless the key argument was set to the name of the dataset. (GH13231)
- Bug in - .rolling()that allowed a negative integer window in construction of the- Rolling()object, but would later fail on aggregation (GH13383)
- Bug in - Seriesindexing with tuple-valued data and a numeric index (GH13509)
- Bug in printing - pd.DataFramewhere unusual elements with the- objectdtype were causing segfaults (GH13717)
- Bug in ranking - Serieswhich could result in segfaults (GH13445)
- Bug in various index types, which did not propagate the name of passed index (GH12309) 
- Bug in - DatetimeIndex, which did not honour the- copy=True(GH13205)
- Bug in - DatetimeIndex.is_normalizedreturns incorrectly for normalized date_range in case of local timezones (GH13459)
- Bug in - pd.concatand- .appendmay coerces- datetime64and- timedeltato- objectdtype containing python built-in- datetimeor- timedeltarather than- Timestampor- Timedelta(GH13626)
- Bug in - PeriodIndex.appendmay raises- AttributeErrorwhen the result is- objectdtype (GH13221)
- Bug in - CategoricalIndex.appendmay accept normal- list(GH13626)
- Bug in - pd.concatand- .appendwith the same timezone get reset to UTC (GH7795)
- Bug in - Seriesand- DataFrame- .appendraises- AmbiguousTimeErrorif data contains datetime near DST boundary (GH13626)
- Bug in - DataFrame.to_csv()in which float values were being quoted even though quotations were specified for non-numeric values only (GH12922, GH13259)
- Bug in - DataFrame.describe()raising- ValueErrorwith only boolean columns (GH13898)
- Bug in - MultiIndexslicing where extra elements were returned when level is non-unique (GH12896)
- Bug in - .str.replacedoes not raise- TypeErrorfor invalid replacement (GH13438)
- Bug in - MultiIndex.from_arrayswhich didn’t check for input array lengths matching (GH13599)
- Bug in - cartesian_productand- MultiIndex.from_productwhich may raise with empty input arrays (GH12258)
- Bug in - pd.read_csv()which may cause a segfault or corruption when iterating in large chunks over a stream/file under rare circumstances (GH13703)
- Bug in - pd.read_csv()which caused errors to be raised when a dictionary containing scalars is passed in for- na_values(GH12224)
- Bug in - pd.read_csv()which caused BOM files to be incorrectly parsed by not ignoring the BOM (GH4793)
- Bug in - pd.read_csv()with- engine='python'which raised errors when a numpy array was passed in for- usecols(GH12546)
- Bug in - pd.read_csv()where the index columns were being incorrectly parsed when parsed as dates with a- thousandsparameter (GH14066)
- Bug in - pd.read_csv()with- engine='python'in which- NaNvalues weren’t being detected after data was converted to numeric values (GH13314)
- Bug in - pd.read_csv()in which the- nrowsargument was not properly validated for both engines (GH10476)
- Bug in - pd.read_csv()with- engine='python'in which infinities of mixed-case forms were not being interpreted properly (GH13274)
- Bug in - pd.read_csv()with- engine='python'in which trailing- NaNvalues were not being parsed (GH13320)
- Bug in - pd.read_csv()with- engine='python'when reading from a- tempfile.TemporaryFileon Windows with Python 3 (GH13398)
- Bug in - pd.read_csv()that prevents- usecolskwarg from accepting single-byte unicode strings (GH13219)
- Bug in - pd.read_csv()that prevents- usecolsfrom being an empty set (GH13402)
- Bug in - pd.read_csv()in the C engine where the NULL character was not being parsed as NULL (GH14012)
- Bug in - pd.read_csv()with- engine='c'in which NULL- quotecharwas not accepted even though- quotingwas specified as- None(GH13411)
- Bug in - pd.read_csv()with- engine='c'in which fields were not properly cast to float when quoting was specified as non-numeric (GH13411)
- Bug in - pd.read_csv()in Python 2.x with non-UTF8 encoded, multi-character separated data (GH3404)
- Bug in - pd.read_csv(), where aliases for utf-xx (e.g. UTF-xx, UTF_xx, utf_xx) raised UnicodeDecodeError (GH13549)
- Bug in - pd.read_csv,- pd.read_table,- pd.read_fwf,- pd.read_stataand- pd.read_saswhere files were opened by parsers but not closed if both- chunksizeand- iteratorwere- None. (GH13940)
- Bug in - StataReader,- StataWriter,- XportReaderand- SAS7BDATReaderwhere a file was not properly closed when an error was raised. (GH13940)
- Bug in - pd.pivot_table()where- margins_nameis ignored when- aggfuncis a list (GH13354)
- Bug in - pd.Series.str.zfill,- center,- ljust,- rjust, and- padwhen passing non-integers, did not raise- TypeError(GH13598)
- Bug in checking for any null objects in a - TimedeltaIndex, which always returned- True(GH13603)
- Bug in - Seriesarithmetic raises- TypeErrorif it contains datetime-like as- objectdtype (GH13043)
- Bug - Series.isnull()and- Series.notnull()ignore- Period('NaT')(GH13737)
- Bug - Series.fillna()and- Series.dropna()don’t affect to- Period('NaT')(GH13737
- Bug in - .fillna(value=np.nan)incorrectly raises- KeyErroron a- categorydtyped- Series(GH14021)
- Bug in extension dtype creation where the created types were not is/identical (GH13285) 
- Bug in - .resample(..)where incorrect warnings were triggered by IPython introspection (GH13618)
- Bug in - NaT-- Periodraises- AttributeError(GH13071)
- Bug in - Seriescomparison may output incorrect result if rhs contains- NaT(GH9005)
- Bug in - Seriesand- Indexcomparison may output incorrect result if it contains- NaTwith- objectdtype (GH13592)
- Bug in - Periodaddition raises- TypeErrorif- Periodis on right hand side (GH13069)
- Bug in - Periodand- Seriesor- Indexcomparison raises- TypeError(GH13200)
- Bug in - pd.set_eng_float_format()that would prevent NaN and Inf from formatting (GH11981)
- Bug in - .unstackwith- Categoricaldtype resets- .orderedto- True(GH13249)
- Clean some compile time warnings in datetime parsing (GH13607) 
- Bug in - factorizeraises- AmbiguousTimeErrorif data contains datetime near DST boundary (GH13750)
- Bug in - .set_indexraises- AmbiguousTimeErrorif new index contains DST boundary and multi levels (GH12920)
- Bug in - .shiftraises- AmbiguousTimeErrorif data contains datetime near DST boundary (GH13926)
- Bug in - pd.read_hdf()returns incorrect result when a- DataFramewith a- categoricalcolumn and a query which doesn’t match any values (GH13792)
- Bug in - .ilocwhen indexing with a non lexsorted MultiIndex (GH13797)
- Bug in - .locwhen indexing with date strings in a reverse sorted- DatetimeIndex(GH14316)
- Bug in - Seriescomparison operators when dealing with zero dim NumPy arrays (GH13006)
- Bug in - .combine_firstmay return incorrect- dtype(GH7630, GH10567)
- Bug in - groupbywhere- applyreturns different result depending on whether first result is- Noneor not (GH12824)
- Bug in - groupby(..).nth()where the group key is included inconsistently if called after- .head()/.tail()(GH12839)
- Bug in - .to_html,- .to_latexand- .to_stringsilently ignore custom datetime formatter passed through the- formatterskey word (GH10690)
- Bug in - DataFrame.iterrows(), not yielding a- Seriessubclasse if defined (GH13977)
- Bug in - pd.to_numericwhen- errors='coerce'and input contains non-hashable objects (GH13324)
- Bug in invalid - Timedeltaarithmetic and comparison may raise- ValueErrorrather than- TypeError(GH13624)
- Bug in invalid datetime parsing in - to_datetimeand- DatetimeIndexmay raise- TypeErrorrather than- ValueError(GH11169, GH11287)
- Bug in - Indexcreated with tz-aware- Timestampand mismatched- tzoption incorrectly coerces timezone (GH13692)
- Bug in - DatetimeIndexwith nanosecond frequency does not include timestamp specified with- end(GH13672)
- Bug in - `Serieswhen setting a slice with a- np.timedelta64(GH14155)
- Bug in - Indexraises- OutOfBoundsDatetimeif- datetimeexceeds- datetime64[ns]bounds, rather than coercing to- objectdtype (GH13663)
- Bug in - Indexmay ignore specified- datetime64or- timedelta64passed as- dtype(GH13981)
- Bug in - RangeIndexcan be created without no arguments rather than raises- TypeError(GH13793)
- Bug in - .value_counts()raises- OutOfBoundsDatetimeif data exceeds- datetime64[ns]bounds (GH13663)
- Bug in - DatetimeIndexmay raise- OutOfBoundsDatetimeif input- np.datetime64has other unit than- ns(GH9114)
- Bug in - Seriescreation with- np.datetime64which has other unit than- nsas- objectdtype results in incorrect values (GH13876)
- Bug in - resamplewith timedelta data where data was casted to float (GH13119).
- Bug in - pd.isnull()- pd.notnull()raise- TypeErrorif input datetime-like has other unit than- ns(GH13389)
- Bug in - pd.merge()may raise- TypeErrorif input datetime-like has other unit than- ns(GH13389)
- Bug in - HDFStore/- read_hdf()discarded- DatetimeIndex.nameif- tzwas set (GH13884)
- Bug in - Categorical.remove_unused_categories()changes- .codesdtype to platform int (GH13261)
- Bug in - groupbywith- as_index=Falsereturns all NaN’s when grouping on multiple columns including a categorical one (GH13204)
- Bug in - df.groupby(...)[...]where getitem with- Int64Indexraised an error (GH13731)
- Bug in the CSS classes assigned to - DataFrame.stylefor index names. Previously they were assigned- "col_heading level<n> col<c>"where- nwas the number of levels + 1. Now they are assigned- "index_name level<n>", where- nis the correct level for that MultiIndex.
- Bug where - pd.read_gbq()could throw- ImportError: No module named discoveryas a result of a naming conflict with another python package called apiclient (GH13454)
- Bug in - Index.unionreturns an incorrect result with a named empty index (GH13432)
- Bugs in - Index.differenceand- DataFrame.joinraise in Python3 when using mixed-integer indexes (GH13432, GH12814)
- Bug in subtract tz-aware - datetime.datetimefrom tz-aware- datetime64series (GH14088)
- Bug in - .to_excel()when DataFrame contains a MultiIndex which contains a label with a NaN value (GH13511)
- Bug in invalid frequency offset string like “D1”, “-2-3H” may not raise - ValueError(GH13930)
- Bug in - concatand- groupbyfor hierarchical frames with- RangeIndexlevels (GH13542).
- Bug in - Series.str.contains()for Series containing only- NaNvalues of- objectdtype (GH14171)
- Bug in - agg()function on groupby dataframe changes dtype of- datetime64[ns]column to- float64(GH12821)
- Bug in using NumPy ufunc with - PeriodIndexto add or subtract integer raise- IncompatibleFrequency. Note that using standard operator like- +or- -is recommended, because standard operators use more efficient path (GH13980)
- Bug in operations on - NaTreturning- floatinstead of- datetime64[ns](GH12941)
- Bug in - Seriesflexible arithmetic methods (like- .add()) raises- ValueErrorwhen- axis=None(GH13894)
- Bug in - DataFrame.to_csv()with- MultiIndexcolumns in which a stray empty line was added (GH6618)
- Bug in - DatetimeIndex,- TimedeltaIndexand- PeriodIndex.equals()may return- Truewhen input isn’t- Indexbut contains the same values (GH13107)
- Bug in assignment against datetime with timezone may not work if it contains datetime near DST boundary (GH14146) 
- Bug in - pd.eval()and- HDFStorequery truncating long float literals with python 2 (GH14241)
- Bug in - Indexraises- KeyErrordisplaying incorrect column when column is not in the df and columns contains duplicate values (GH13822)
- Bug in - Periodand- PeriodIndexcreating wrong dates when frequency has combined offset aliases (GH13874)
- Bug in - .to_string()when called with an integer- line_widthand- index=Falseraises an UnboundLocalError exception because- idxreferenced before assignment.
- Bug in - eval()where the- resolversargument would not accept a list (GH14095)
- Bugs in - stack,- get_dummies,- make_axis_dummieswhich don’t preserve categorical dtypes in (multi)indexes (GH13854)
- PeriodIndexcan now accept- listand- arraywhich contains- pd.NaT(GH13430)
- Bug in - df.groupbywhere- .median()returns arbitrary values if grouped dataframe contains empty bins (GH13629)
- Bug in - Index.copy()where- nameparameter was ignored (GH14302)
Contributors#
A total of 117 people contributed patches to this release. People with a “+” by their names contributed a patch for the first time.
- Adrien Emery + 
- Alex Alekseyev 
- Alex Vig + 
- Allen Riddell + 
- Amol + 
- Amol Agrawal + 
- Andy R. Terrel + 
- Anthonios Partheniou 
- Ben Kandel + 
- Bob Baxley + 
- Brett Rosen + 
- Camilo Cota + 
- Chris 
- Chris Grinolds 
- Chris Warth 
- Christian Hudon 
- Christopher C. Aycock 
- Daniel Siladji + 
- Douglas McNeil 
- Drewrey Lupton + 
- Eduardo Blancas Reyes + 
- Elliot Marsden + 
- Evan Wright 
- Felix Marczinowski + 
- Francis T. O’Donovan 
- Geraint Duck + 
- Giacomo Ferroni + 
- Grant Roch + 
- Gábor Lipták 
- Haleemur Ali + 
- Hassan Shamim + 
- Iulius Curt + 
- Ivan Nazarov + 
- Jeff Reback 
- Jeffrey Gerard + 
- Jenn Olsen + 
- Jim Crist 
- Joe Jevnik 
- John Evans + 
- John Freeman 
- John Liekezer + 
- John W. O’Brien 
- John Zwinck + 
- Johnny Gill + 
- Jordan Erenrich + 
- Joris Van den Bossche 
- Josh Howes + 
- Jozef Brandys + 
- Ka Wo Chen 
- Kamil Sindi + 
- Kerby Shedden 
- Kernc + 
- Kevin Sheppard 
- Matthieu Brucher + 
- Maximilian Roos 
- Michael Scherer + 
- Mike Graham + 
- Mortada Mehyar 
- Muhammad Haseeb Tariq + 
- Nate George + 
- Neil Parley + 
- Nicolas Bonnotte 
- OXPHOS 
- Pan Deng / Zora + 
- Paul + 
- Paul Mestemaker + 
- Pauli Virtanen 
- Pawel Kordek + 
- Pietro Battiston 
- Piotr Jucha + 
- Ravi Kumar Nimmi + 
- Robert Gieseke 
- Robert Kern + 
- Roger Thomas 
- Roy Keyes + 
- Russell Smith + 
- Sahil Dua + 
- Sanjiv Lobo + 
- Sašo Stanovnik + 
- Shawn Heide + 
- Sinhrks 
- Stephen Kappel + 
- Steve Choi + 
- Stewart Henderson + 
- Sudarshan Konge + 
- Thomas A Caswell 
- Tom Augspurger 
- Tom Bird + 
- Uwe Hoffmann + 
- WillAyd + 
- Xiang Zhang + 
- YG-Riku + 
- Yadunandan + 
- Yaroslav Halchenko 
- Yuichiro Kaneko + 
- adneu 
- agraboso + 
- babakkeyvani + 
- c123w + 
- chris-b1 
- cmazzullo + 
- conquistador1492 + 
- cr3 + 
- dsm054 
- gfyoung 
- harshul1610 + 
- iamsimha + 
- jackieleng + 
- mpuels + 
- pijucha + 
- priyankjain + 
- sinhrks 
- wcwagner + 
- yui-knk + 
- zhangjinjie + 
- znmean + 
- 颜发才(Yan Facai) +