Version 0.18.0 (March 13, 2016)#
This is a major release from 0.17.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
Warning
pandas >= 0.18.0 no longer supports compatibility with Python version 2.6 and 3.3 (GH7718, GH11273)
Warning
numexpr
version 2.4.4 will now show a warning and not be used as a computation back-end for pandas because of some buggy behavior. This does not affect other versions (>= 2.1 and >= 2.4.6). (GH12489)
Highlights include:
Moving and expanding window functions are now methods on Series and DataFrame, similar to
.groupby
, see here.Adding support for a
RangeIndex
as a specialized form of theInt64Index
for memory savings, see here.API breaking change to the
.resample
method to make it more.groupby
like, see here.Removal of support for positional indexing with floats, which was deprecated since 0.14.0. This will now raise a
TypeError
, see here.The
.to_xarray()
function has been added for compatibility with the xarray package, see here.The
read_sas
function has been enhanced to readsas7bdat
files, see here.Addition of the .str.extractall() method, and API changes to the .str.extract() method and .str.cat() method.
pd.test()
top-level nose test runner is available (GH4327).
Check the API Changes and deprecations before updating.
What’s new in v0.18.0
New features#
Window functions are now methods#
Window functions have been refactored to be methods on Series/DataFrame
objects, rather than top-level functions, which are now deprecated. This allows these window-type functions, to have a similar API to that of .groupby
. See the full documentation here (GH11603, GH12373)
In [1]: np.random.seed(1234)
In [2]: df = pd.DataFrame({'A': range(10), 'B': np.random.randn(10)})
In [3]: df
Out[3]:
A B
0 0 0.471435
1 1 -1.190976
2 2 1.432707
3 3 -0.312652
4 4 -0.720589
5 5 0.887163
6 6 0.859588
7 7 -0.636524
8 8 0.015696
9 9 -2.242685
[10 rows x 2 columns]
Previous behavior:
In [8]: pd.rolling_mean(df, window=3)
FutureWarning: pd.rolling_mean is deprecated for DataFrame and will be removed in a future version, replace with
DataFrame.rolling(window=3,center=False).mean()
Out[8]:
A B
0 NaN NaN
1 NaN NaN
2 1 0.237722
3 2 -0.023640
4 3 0.133155
5 4 -0.048693
6 5 0.342054
7 6 0.370076
8 7 0.079587
9 8 -0.954504
New behavior:
In [4]: r = df.rolling(window=3)
These show a descriptive repr
In [5]: r
Out[5]: Rolling [window=3,center=False,axis=0,method=single]
with tab-completion of available methods and properties.
In [9]: r.<TAB> # noqa E225, E999
r.A r.agg r.apply r.count r.exclusions r.max r.median r.name r.skew r.sum
r.B r.aggregate r.corr r.cov r.kurt r.mean r.min r.quantile r.std r.var
The methods operate on the Rolling
object itself
In [6]: r.mean()
Out[6]:
A B
0 NaN NaN
1 NaN NaN
2 1.0 0.237722
3 2.0 -0.023640
4 3.0 0.133155
5 4.0 -0.048693
6 5.0 0.342054
7 6.0 0.370076
8 7.0 0.079587
9 8.0 -0.954504
[10 rows x 2 columns]
They provide getitem accessors
In [7]: r['A'].mean()
Out[7]:
0 NaN
1 NaN
2 1.0
3 2.0
4 3.0
5 4.0
6 5.0
7 6.0
8 7.0
9 8.0
Name: A, Length: 10, dtype: float64
And multiple aggregations
In [8]: r.agg({'A': ['mean', 'std'],
...: 'B': ['mean', 'std']})
...:
Out[8]:
A B
mean std mean std
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 1.0 1.0 0.237722 1.327364
3 2.0 1.0 -0.023640 1.335505
4 3.0 1.0 0.133155 1.143778
5 4.0 1.0 -0.048693 0.835747
6 5.0 1.0 0.342054 0.920379
7 6.0 1.0 0.370076 0.871850
8 7.0 1.0 0.079587 0.750099
9 8.0 1.0 -0.954504 1.162285
[10 rows x 4 columns]
Changes to rename#
Series.rename
and NDFrame.rename_axis
can now take a scalar or list-like
argument for altering the Series or axis name, in addition to their old behaviors of altering labels. (GH9494, GH11965)
In [9]: s = pd.Series(np.random.randn(5))
In [10]: s.rename('newname')
Out[10]:
0 1.150036
1 0.991946
2 0.953324
3 -2.021255
4 -0.334077
Name: newname, Length: 5, dtype: float64
In [11]: df = pd.DataFrame(np.random.randn(5, 2))
In [12]: (df.rename_axis("indexname")
....: .rename_axis("columns_name", axis="columns"))
....:
Out[12]:
columns_name 0 1
indexname
0 0.002118 0.405453
1 0.289092 1.321158
2 -1.546906 -0.202646
3 -0.655969 0.193421
4 0.553439 1.318152
[5 rows x 2 columns]
The new functionality works well in method chains. Previously these methods only accepted functions or dicts mapping a label to a new label. This continues to work as before for function or dict-like values.
Range Index#
A RangeIndex
has been added to the Int64Index
sub-classes to support a memory saving alternative for common use cases. This has a similar implementation to the python range
object (xrange
in python 2), in that it only stores the start, stop, and step values for the index. It will transparently interact with the user API, converting to Int64Index
if needed.
This will now be the default constructed index for NDFrame
objects, rather than previous an Int64Index
. (GH939, GH12070, GH12071, GH12109, GH12888)
Previous behavior:
In [3]: s = pd.Series(range(1000))
In [4]: s.index
Out[4]:
Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
990, 991, 992, 993, 994, 995, 996, 997, 998, 999], dtype='int64', length=1000)
In [6]: s.index.nbytes
Out[6]: 8000
New behavior:
In [13]: s = pd.Series(range(1000))
In [14]: s.index
Out[14]: RangeIndex(start=0, stop=1000, step=1)
In [15]: s.index.nbytes
Out[15]: 128
Changes to str.extract#
The .str.extract method takes a regular expression with capture groups, finds the first match in each subject string, and returns the contents of the capture groups (GH11386).
In v0.18.0, the expand
argument was added to
extract
.
expand=False
: it returns aSeries
,Index
, orDataFrame
, depending on the subject and regular expression pattern (same behavior as pre-0.18.0).expand=True
: it always returns aDataFrame
, which is more consistent and less confusing from the perspective of a user.
Currently the default is expand=None
which gives a FutureWarning
and uses expand=False
. To avoid this warning, please explicitly specify expand
.
In [1]: pd.Series(['a1', 'b2', 'c3']).str.extract(r'[ab](\d)', expand=None)
FutureWarning: currently extract(expand=None) means expand=False (return Index/Series/DataFrame)
but in a future version of pandas this will be changed to expand=True (return DataFrame)
Out[1]:
0 1
1 2
2 NaN
dtype: object
Extracting a regular expression with one group returns a Series if
expand=False
.
In [16]: pd.Series(['a1', 'b2', 'c3']).str.extract(r'[ab](\d)', expand=False)
Out[16]:
0 1
1 2
2 NaN
Length: 3, dtype: object
It returns a DataFrame
with one column if expand=True
.
In [17]: pd.Series(['a1', 'b2', 'c3']).str.extract(r'[ab](\d)', expand=True)
Out[17]:
0
0 1
1 2
2 NaN
[3 rows x 1 columns]
Calling on an Index
with a regex with exactly one capture group
returns an Index
if expand=False
.
In [18]: s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"])
In [19]: s.index
Out[19]: Index(['A11', 'B22', 'C33'], dtype='object')
In [20]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)
Out[20]: Index(['A', 'B', 'C'], dtype='object', name='letter')
It returns a DataFrame
with one column if expand=True
.
In [21]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)
Out[21]:
letter
0 A
1 B
2 C
[3 rows x 1 columns]
Calling on an Index
with a regex with more than one capture group
raises ValueError
if expand=False
.
>>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False)
ValueError: only one regex group is supported with Index
It returns a DataFrame
if expand=True
.
In [22]: s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)
Out[22]:
letter 1
0 A 11
1 B 22
2 C 33
[3 rows x 2 columns]
In summary, extract(expand=True)
always returns a DataFrame
with a row for every subject string, and a column for every capture
group.
Addition of str.extractall#
The .str.extractall method was added
(GH11386). Unlike extract
, which returns only the first
match.
In [23]: s = pd.Series(["a1a2", "b1", "c1"], ["A", "B", "C"])
In [24]: s
Out[24]:
A a1a2
B b1
C c1
Length: 3, dtype: object
In [25]: s.str.extract(r"(?P<letter>[ab])(?P<digit>\d)", expand=False)
Out[25]:
letter digit
A a 1
B b 1
C NaN NaN
[3 rows x 2 columns]
The extractall
method returns all matches.
In [26]: s.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)")
Out[26]:
letter digit
match
A 0 a 1
1 a 2
B 0 b 1
[3 rows x 2 columns]
Changes to str.cat#
The method .str.cat()
concatenates the members of a Series
. Before, if NaN
values were present in the Series, calling .str.cat()
on it would return NaN
, unlike the rest of the Series.str.*
API. This behavior has been amended to ignore NaN
values by default. (GH11435).
A new, friendlier ValueError
is added to protect against the mistake of supplying the sep
as an arg, rather than as a kwarg. (GH11334).
In [27]: pd.Series(['a', 'b', np.nan, 'c']).str.cat(sep=' ')
Out[27]: 'a b c'
In [28]: pd.Series(['a', 'b', np.nan, 'c']).str.cat(sep=' ', na_rep='?')
Out[28]: 'a b ? c'
In [2]: pd.Series(['a', 'b', np.nan, 'c']).str.cat(' ')
ValueError: Did you mean to supply a ``sep`` keyword?
Datetimelike rounding#
DatetimeIndex
, Timestamp
, TimedeltaIndex
, Timedelta
have gained the .round()
, .floor()
and .ceil()
method for datetimelike rounding, flooring and ceiling. (GH4314, GH11963)
Naive datetimes
In [29]: dr = pd.date_range('20130101 09:12:56.1234', periods=3)
In [30]: dr
Out[30]:
DatetimeIndex(['2013-01-01 09:12:56.123400', '2013-01-02 09:12:56.123400',
'2013-01-03 09:12:56.123400'],
dtype='datetime64[ns]', freq='D')
In [31]: dr.round('s')
Out[31]:
DatetimeIndex(['2013-01-01 09:12:56', '2013-01-02 09:12:56',
'2013-01-03 09:12:56'],
dtype='datetime64[ns]', freq=None)
# Timestamp scalar
In [32]: dr[0]
Out[32]: Timestamp('2013-01-01 09:12:56.123400', freq='D')
In [33]: dr[0].round('10s')
Out[33]: Timestamp('2013-01-01 09:13:00')
Tz-aware are rounded, floored and ceiled in local times
In [34]: dr = dr.tz_localize('US/Eastern')
In [35]: dr
Out[35]:
DatetimeIndex(['2013-01-01 09:12:56.123400-05:00',
'2013-01-02 09:12:56.123400-05:00',
'2013-01-03 09:12:56.123400-05:00'],
dtype='datetime64[ns, US/Eastern]', freq=None)
In [36]: dr.round('s')
Out[36]:
DatetimeIndex(['2013-01-01 09:12:56-05:00', '2013-01-02 09:12:56-05:00',
'2013-01-03 09:12:56-05:00'],
dtype='datetime64[ns, US/Eastern]', freq=None)
Timedeltas
In [37]: t = pd.timedelta_range('1 days 2 hr 13 min 45 us', periods=3, freq='d')
In [38]: t
Out[38]:
TimedeltaIndex(['1 days 02:13:00.000045', '2 days 02:13:00.000045',
'3 days 02:13:00.000045'],
dtype='timedelta64[ns]', freq='D')
In [39]: t.round('10min')
Out[39]: TimedeltaIndex(['1 days 02:10:00', '2 days 02:10:00', '3 days 02:10:00'], dtype='timedelta64[ns]', freq=None)
# Timedelta scalar
In [40]: t[0]
Out[40]: Timedelta('1 days 02:13:00.000045')
In [41]: t[0].round('2h')
Out[41]: Timedelta('1 days 02:00:00')
In addition, .round()
, .floor()
and .ceil()
will be available through the .dt
accessor of Series
.
In [42]: s = pd.Series(dr)
In [43]: s
Out[43]:
0 2013-01-01 09:12:56.123400-05:00
1 2013-01-02 09:12:56.123400-05:00
2 2013-01-03 09:12:56.123400-05:00
Length: 3, dtype: datetime64[ns, US/Eastern]
In [44]: s.dt.round('D')
Out[44]:
0 2013-01-01 00:00:00-05:00
1 2013-01-02 00:00:00-05:00
2 2013-01-03 00:00:00-05:00
Length: 3, dtype: datetime64[ns, US/Eastern]
Formatting of integers in FloatIndex#
Integers in FloatIndex
, e.g. 1., are now formatted with a decimal point and a 0
digit, e.g. 1.0
(GH11713)
This change not only affects the display to the console, but also the output of IO methods like .to_csv
or .to_html
.
Previous behavior:
In [2]: s = pd.Series([1, 2, 3], index=np.arange(3.))
In [3]: s
Out[3]:
0 1
1 2
2 3
dtype: int64
In [4]: s.index
Out[4]: Float64Index([0.0, 1.0, 2.0], dtype='float64')
In [5]: print(s.to_csv(path=None))
0,1
1,2
2,3
New behavior:
In [45]: s = pd.Series([1, 2, 3], index=np.arange(3.))
In [46]: s
Out[46]:
0.0 1
1.0 2
2.0 3
Length: 3, dtype: int64
In [47]: s.index
Out[47]: Float64Index([0.0, 1.0, 2.0], dtype='float64')
In [48]: print(s.to_csv(path_or_buf=None, header=False))
0.0,1
1.0,2
2.0,3
Changes to dtype assignment behaviors#
When a DataFrame’s slice is updated with a new slice of the same dtype, the dtype of the DataFrame will now remain the same. (GH10503)
Previous behavior:
In [5]: df = pd.DataFrame({'a': [0, 1, 1],
'b': pd.Series([100, 200, 300], dtype='uint32')})
In [7]: df.dtypes
Out[7]:
a int64
b uint32
dtype: object
In [8]: ix = df['a'] == 1
In [9]: df.loc[ix, 'b'] = df.loc[ix, 'b']
In [11]: df.dtypes
Out[11]:
a int64
b int64
dtype: object
New behavior:
In [49]: df = pd.DataFrame({'a': [0, 1, 1],
....: 'b': pd.Series([100, 200, 300], dtype='uint32')})
....:
In [50]: df.dtypes
Out[50]:
a int64
b uint32
Length: 2, dtype: object
In [51]: ix = df['a'] == 1
In [52]: df.loc[ix, 'b'] = df.loc[ix, 'b']
In [53]: df.dtypes
Out[53]:
a int64
b uint32
Length: 2, dtype: object
When a DataFrame’s integer slice is partially updated with a new slice of floats that could potentially be down-casted to integer without losing precision, the dtype of the slice will be set to float instead of integer.
Previous behavior:
In [4]: df = pd.DataFrame(np.array(range(1,10)).reshape(3,3),
columns=list('abc'),
index=[[4,4,8], [8,10,12]])
In [5]: df
Out[5]:
a b c
4 8 1 2 3
10 4 5 6
8 12 7 8 9
In [7]: df.ix[4, 'c'] = np.array([0., 1.])
In [8]: df
Out[8]:
a b c
4 8 1 2 0
10 4 5 1
8 12 7 8 9
New behavior:
In [54]: df = pd.DataFrame(np.array(range(1,10)).reshape(3,3),
....: columns=list('abc'),
....: index=[[4,4,8], [8,10,12]])
....:
In [55]: df
Out[55]:
a b c
4 8 1 2 3
10 4 5 6
8 12 7 8 9
[3 rows x 3 columns]
In [56]: df.loc[4, 'c'] = np.array([0., 1.])
In [57]: df
Out[57]:
a b c
4 8 1 2 0
10 4 5 1
8 12 7 8 9
[3 rows x 3 columns]
Method to_xarray#
In a future version of pandas, we will be deprecating Panel
and other > 2 ndim objects. In order to provide for continuity,
all NDFrame
objects have gained the .to_xarray()
method in order to convert to xarray
objects, which has
a pandas-like interface for > 2 ndim. (GH11972)
See the xarray full-documentation here.
In [1]: p = Panel(np.arange(2*3*4).reshape(2,3,4))
In [2]: p.to_xarray()
Out[2]:
<xarray.DataArray (items: 2, major_axis: 3, minor_axis: 4)>
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
Coordinates:
* items (items) int64 0 1
* major_axis (major_axis) int64 0 1 2
* minor_axis (minor_axis) int64 0 1 2 3
Latex representation#
DataFrame
has gained a ._repr_latex_()
method in order to allow for conversion to latex in a ipython/jupyter notebook using nbconvert. (GH11778)
Note that this must be activated by setting the option pd.display.latex.repr=True
(GH12182)
For example, if you have a jupyter notebook you plan to convert to latex using nbconvert, place the statement pd.display.latex.repr=True
in the first cell to have the contained DataFrame output also stored as latex.
The options display.latex.escape
and display.latex.longtable
have also been added to the configuration and are used automatically by the to_latex
method. See the available options docs for more info.
pd.read_sas()
changes#
read_sas
has gained the ability to read SAS7BDAT files, including compressed files. The files can be read in entirety, or incrementally. For full details see here. (GH4052)
Other enhancements#
Handle truncated floats in SAS xport files (GH11713)
Added option to hide index in
Series.to_string
(GH11729)read_excel
now supports s3 urls of the formats3://bucketname/filename
(GH11447)add support for
AWS_S3_HOST
env variable when reading from s3 (GH12198)A simple version of
Panel.round()
is now implemented (GH11763)For Python 3.x,
round(DataFrame)
,round(Series)
,round(Panel)
will work (GH11763)sys.getsizeof(obj)
returns the memory usage of a pandas object, including the values it contains (GH11597)Series
gained anis_unique
attribute (GH11946)DataFrame.quantile
andSeries.quantile
now acceptinterpolation
keyword (GH10174).Added
DataFrame.style.format
for more flexible formatting of cell values (GH11692)DataFrame.select_dtypes
now allows thenp.float16
type code (GH11990)pivot_table()
now accepts most iterables for thevalues
parameter (GH12017)Added Google
BigQuery
service account authentication support, which enables authentication on remote servers. (GH11881, GH12572). For further details see hereHDFStore
is now iterable:for k in store
is equivalent tofor k in store.keys()
(GH12221).Add missing methods/fields to
.dt
forPeriod
(GH8848)The entire code base has been
PEP
-ified (GH12096)
Backwards incompatible API changes#
the leading white spaces have been removed from the output of
.to_string(index=False)
method (GH11833)the
out
parameter has been removed from theSeries.round()
method. (GH11763)DataFrame.round()
leaves non-numeric columns unchanged in its return, rather than raises. (GH11885)DataFrame.head(0)
andDataFrame.tail(0)
return empty frames, rather thanself
. (GH11937)Series.head(0)
andSeries.tail(0)
return empty series, rather thanself
. (GH11937)to_msgpack
andread_msgpack
encoding now defaults to'utf-8'
. (GH12170)the order of keyword arguments to text file parsing functions (
.read_csv()
,.read_table()
,.read_fwf()
) changed to group related arguments. (GH11555)NaTType.isoformat
now returns the string'NaT
to allow the result to be passed to the constructor ofTimestamp
. (GH12300)
NaT and Timedelta operations#
NaT
and Timedelta
have expanded arithmetic operations, which are extended to Series
arithmetic where applicable. Operations defined for datetime64[ns]
or timedelta64[ns]
are now also defined for NaT
(GH11564).
NaT
now supports arithmetic operations with integers and floats.
In [58]: pd.NaT * 1
Out[58]: NaT
In [59]: pd.NaT * 1.5
Out[59]: NaT
In [60]: pd.NaT / 2
Out[60]: NaT
In [61]: pd.NaT * np.nan
Out[61]: NaT
NaT
defines more arithmetic operations with datetime64[ns]
and timedelta64[ns]
.
In [62]: pd.NaT / pd.NaT
Out[62]: nan
In [63]: pd.Timedelta('1s') / pd.NaT
Out[63]: nan
NaT
may represent either a datetime64[ns]
null or a timedelta64[ns]
null.
Given the ambiguity, it is treated as a timedelta64[ns]
, which allows more operations
to succeed.
In [64]: pd.NaT + pd.NaT
Out[64]: NaT
# same as
In [65]: pd.Timedelta('1s') + pd.Timedelta('1s')
Out[65]: Timedelta('0 days 00:00:02')
as opposed to
In [3]: pd.Timestamp('19900315') + pd.Timestamp('19900315')
TypeError: unsupported operand type(s) for +: 'Timestamp' and 'Timestamp'
However, when wrapped in a Series
whose dtype
is datetime64[ns]
or timedelta64[ns]
,
the dtype
information is respected.
In [1]: pd.Series([pd.NaT], dtype='<M8[ns]') + pd.Series([pd.NaT], dtype='<M8[ns]')
TypeError: can only operate on a datetimes for subtraction,
but the operator [__add__] was passed
In [66]: pd.Series([pd.NaT], dtype='<m8[ns]') + pd.Series([pd.NaT], dtype='<m8[ns]')
Out[66]:
0 NaT
Length: 1, dtype: timedelta64[ns]
Timedelta
division by floats
now works.
In [67]: pd.Timedelta('1s') / 2.0
Out[67]: Timedelta('0 days 00:00:00.500000')
Subtraction by Timedelta
in a Series
by a Timestamp
works (GH11925)
In [68]: ser = pd.Series(pd.timedelta_range('1 day', periods=3))
In [69]: ser
Out[69]:
0 1 days
1 2 days
2 3 days
Length: 3, dtype: timedelta64[ns]
In [70]: pd.Timestamp('2012-01-01') - ser
Out[70]:
0 2011-12-31
1 2011-12-30
2 2011-12-29
Length: 3, dtype: datetime64[ns]
NaT.isoformat()
now returns 'NaT'
. This change allows
pd.Timestamp
to rehydrate any timestamp like object from its isoformat
(GH12300).
Changes to msgpack#
Forward incompatible changes in msgpack
writing format were made over 0.17.0 and 0.18.0; older versions of pandas cannot read files packed by newer versions (GH12129, GH10527)
Bugs in to_msgpack
and read_msgpack
introduced in 0.17.0 and fixed in 0.18.0, caused files packed in Python 2 unreadable by Python 3 (GH12142). The following table describes the backward and forward compat of msgpacks.
Warning
Packed with |
Can be unpacked with |
---|---|
pre-0.17 / Python 2 |
any |
pre-0.17 / Python 3 |
any |
0.17 / Python 2 |
|
0.17 / Python 3 |
>=0.18 / any Python |
0.18 |
>= 0.18 |
0.18.0 is backward-compatible for reading files packed by older versions, except for files packed with 0.17 in Python 2, in which case only they can only be unpacked in Python 2.
Signature change for .rank#
Series.rank
and DataFrame.rank
now have the same signature (GH11759)
Previous signature
In [3]: pd.Series([0,1]).rank(method='average', na_option='keep',
ascending=True, pct=False)
Out[3]:
0 1
1 2
dtype: float64
In [4]: pd.DataFrame([0,1]).rank(axis=0, numeric_only=None,
method='average', na_option='keep',
ascending=True, pct=False)
Out[4]:
0
0 1
1 2
New signature
In [71]: pd.Series([0,1]).rank(axis=0, method='average', numeric_only=False,
....: na_option='keep', ascending=True, pct=False)
....:
Out[71]:
0 1.0
1 2.0
Length: 2, dtype: float64
In [72]: pd.DataFrame([0,1]).rank(axis=0, method='average', numeric_only=False,
....: na_option='keep', ascending=True, pct=False)
....:
Out[72]:
0
0 1.0
1 2.0
[2 rows x 1 columns]
Bug in QuarterBegin with n=0#
In previous versions, the behavior of the QuarterBegin offset was inconsistent
depending on the date when the n
parameter was 0. (GH11406)
The general semantics of anchored offsets for n=0
is to not move the date
when it is an anchor point (e.g., a quarter start date), and otherwise roll
forward to the next anchor point.
In [73]: d = pd.Timestamp('2014-02-01')
In [74]: d
Out[74]: Timestamp('2014-02-01 00:00:00')
In [75]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
Out[75]: Timestamp('2014-02-01 00:00:00')
In [76]: d + pd.offsets.QuarterBegin(n=0, startingMonth=1)
Out[76]: Timestamp('2014-04-01 00:00:00')
For the QuarterBegin
offset in previous versions, the date would be rolled
backwards if date was in the same month as the quarter start date.
In [3]: d = pd.Timestamp('2014-02-15')
In [4]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
Out[4]: Timestamp('2014-02-01 00:00:00')
This behavior has been corrected in version 0.18.0, which is consistent with
other anchored offsets like MonthBegin
and YearBegin
.
In [77]: d = pd.Timestamp('2014-02-15')
In [78]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
Out[78]: Timestamp('2014-05-01 00:00:00')
Resample API#
Like the change in the window functions API above, .resample(...)
is changing to have a more groupby-like API. (GH11732, GH12702, GH12202, GH12332, GH12334, GH12348, GH12448).
In [79]: np.random.seed(1234)
In [80]: df = pd.DataFrame(np.random.rand(10,4),
....: columns=list('ABCD'),
....: index=pd.date_range('2010-01-01 09:00:00',
....: periods=10, freq='s'))
....:
In [81]: df
Out[81]:
A B C D
2010-01-01 09:00:00 0.191519 0.622109 0.437728 0.785359
2010-01-01 09:00:01 0.779976 0.272593 0.276464 0.801872
2010-01-01 09:00:02 0.958139 0.875933 0.357817 0.500995
2010-01-01 09:00:03 0.683463 0.712702 0.370251 0.561196
2010-01-01 09:00:04 0.503083 0.013768 0.772827 0.882641
2010-01-01 09:00:05 0.364886 0.615396 0.075381 0.368824
2010-01-01 09:00:06 0.933140 0.651378 0.397203 0.788730
2010-01-01 09:00:07 0.316836 0.568099 0.869127 0.436173
2010-01-01 09:00:08 0.802148 0.143767 0.704261 0.704581
2010-01-01 09:00:09 0.218792 0.924868 0.442141 0.909316
[10 rows x 4 columns]
Previous API:
You would write a resampling operation that immediately evaluates. If a how
parameter was not provided, it
would default to how='mean'
.
In [6]: df.resample('2s')
Out[6]:
A B C D
2010-01-01 09:00:00 0.485748 0.447351 0.357096 0.793615
2010-01-01 09:00:02 0.820801 0.794317 0.364034 0.531096
2010-01-01 09:00:04 0.433985 0.314582 0.424104 0.625733
2010-01-01 09:00:06 0.624988 0.609738 0.633165 0.612452
2010-01-01 09:00:08 0.510470 0.534317 0.573201 0.806949
You could also specify a how
directly
In [7]: df.resample('2s', how='sum')
Out[7]:
A B C D
2010-01-01 09:00:00 0.971495 0.894701 0.714192 1.587231
2010-01-01 09:00:02 1.641602 1.588635 0.728068 1.062191
2010-01-01 09:00:04 0.867969 0.629165 0.848208 1.251465
2010-01-01 09:00:06 1.249976 1.219477 1.266330 1.224904
2010-01-01 09:00:08 1.020940 1.068634 1.146402 1.613897
New API:
Now, you can write .resample(..)
as a 2-stage operation like .groupby(...)
, which
yields a Resampler
.
In [82]: r = df.resample('2s')
In [83]: r
Out[83]: <pandas.core.resample.DatetimeIndexResampler object at 0x7f2d8ea71f10>
Downsampling#
You can then use this object to perform operations. These are downsampling operations (going from a higher frequency to a lower one).
In [84]: r.mean()
Out[84]:
A B C D
2010-01-01 09:00:00 0.485748 0.447351 0.357096 0.793615
2010-01-01 09:00:02 0.820801 0.794317 0.364034 0.531096
2010-01-01 09:00:04 0.433985 0.314582 0.424104 0.625733
2010-01-01 09:00:06 0.624988 0.609738 0.633165 0.612452
2010-01-01 09:00:08 0.510470 0.534317 0.573201 0.806949
[5 rows x 4 columns]
In [85]: r.sum()
Out[85]:
A B C D
2010-01-01 09:00:00 0.971495 0.894701 0.714192 1.587231
2010-01-01 09:00:02 1.641602 1.588635 0.728068 1.062191
2010-01-01 09:00:04 0.867969 0.629165 0.848208 1.251465
2010-01-01 09:00:06 1.249976 1.219477 1.266330 1.224904
2010-01-01 09:00:08 1.020940 1.068634 1.146402 1.613897
[5 rows x 4 columns]
Furthermore, resample now supports getitem
operations to perform the resample on specific columns.
In [86]: r[['A','C']].mean()
Out[86]:
A C
2010-01-01 09:00:00 0.485748 0.357096
2010-01-01 09:00:02 0.820801 0.364034
2010-01-01 09:00:04 0.433985 0.424104
2010-01-01 09:00:06 0.624988 0.633165
2010-01-01 09:00:08 0.510470 0.573201
[5 rows x 2 columns]
and .aggregate
type operations.
In [87]: r.agg({'A' : 'mean', 'B' : 'sum'})
Out[87]:
A B
2010-01-01 09:00:00 0.485748 0.894701
2010-01-01 09:00:02 0.820801 1.588635
2010-01-01 09:00:04 0.433985 0.629165
2010-01-01 09:00:06 0.624988 1.219477
2010-01-01 09:00:08 0.510470 1.068634
[5 rows x 2 columns]
These accessors can of course, be combined
In [88]: r[['A','B']].agg(['mean','sum'])
Out[88]:
A B
mean sum mean sum
2010-01-01 09:00:00 0.485748 0.971495 0.447351 0.894701
2010-01-01 09:00:02 0.820801 1.641602 0.794317 1.588635
2010-01-01 09:00:04 0.433985 0.867969 0.314582 0.629165
2010-01-01 09:00:06 0.624988 1.249976 0.609738 1.219477
2010-01-01 09:00:08 0.510470 1.020940 0.534317 1.068634
[5 rows x 4 columns]
Upsampling#
Upsampling operations take you from a lower frequency to a higher frequency. These are now
performed with the Resampler
objects with backfill()
,
ffill()
, fillna()
and asfreq()
methods.
In [89]: s = pd.Series(np.arange(5, dtype='int64'),
....: index=pd.date_range('2010-01-01', periods=5, freq='Q'))
....:
In [90]: s
Out[90]:
2010-03-31 0
2010-06-30 1
2010-09-30 2
2010-12-31 3
2011-03-31 4
Freq: Q-DEC, Length: 5, dtype: int64
Previously
In [6]: s.resample('M', fill_method='ffill')
Out[6]:
2010-03-31 0
2010-04-30 0
2010-05-31 0
2010-06-30 1
2010-07-31 1
2010-08-31 1
2010-09-30 2
2010-10-31 2
2010-11-30 2
2010-12-31 3
2011-01-31 3
2011-02-28 3
2011-03-31 4
Freq: M, dtype: int64
New API
In [91]: s.resample('M').ffill()
Out[91]:
2010-03-31 0
2010-04-30 0
2010-05-31 0
2010-06-30 1
2010-07-31 1
2010-08-31 1
2010-09-30 2
2010-10-31 2
2010-11-30 2
2010-12-31 3
2011-01-31 3
2011-02-28 3
2011-03-31 4
Freq: M, Length: 13, dtype: int64
Note
In the new API, you can either downsample OR upsample. The prior implementation would allow you to pass an aggregator function (like mean
) even though you were upsampling, providing a bit of confusion.
Previous API will work but with deprecations#
Warning
This new API for resample includes some internal changes for the prior-to-0.18.0 API, to work with a deprecation warning in most cases, as the resample operation returns a deferred object. We can intercept operations and just do what the (pre 0.18.0) API did (with a warning). Here is a typical use case:
In [4]: r = df.resample('2s')
In [6]: r*10
pandas/tseries/resample.py:80: FutureWarning: .resample() is now a deferred operation
use .resample(...).mean() instead of .resample(...)
Out[6]:
A B C D
2010-01-01 09:00:00 4.857476 4.473507 3.570960 7.936154
2010-01-01 09:00:02 8.208011 7.943173 3.640340 5.310957
2010-01-01 09:00:04 4.339846 3.145823 4.241039 6.257326
2010-01-01 09:00:06 6.249881 6.097384 6.331650 6.124518
2010-01-01 09:00:08 5.104699 5.343172 5.732009 8.069486
However, getting and assignment operations directly on a Resampler
will raise a ValueError
:
In [7]: r.iloc[0] = 5
ValueError: .resample() is now a deferred operation
use .resample(...).mean() instead of .resample(...)
There is a situation where the new API can not perform all the operations when using original code.
This code is intending to resample every 2s, take the mean
AND then take the min
of those results.
In [4]: df.resample('2s').min()
Out[4]:
A 0.433985
B 0.314582
C 0.357096
D 0.531096
dtype: float64
The new API will:
In [92]: df.resample('2s').min()
Out[92]:
A B C D
2010-01-01 09:00:00 0.191519 0.272593 0.276464 0.785359
2010-01-01 09:00:02 0.683463 0.712702 0.357817 0.500995
2010-01-01 09:00:04 0.364886 0.013768 0.075381 0.368824
2010-01-01 09:00:06 0.316836 0.568099 0.397203 0.436173
2010-01-01 09:00:08 0.218792 0.143767 0.442141 0.704581
[5 rows x 4 columns]
The good news is the return dimensions will differ between the new API and the old API, so this should loudly raise an exception.
To replicate the original operation
In [93]: df.resample('2s').mean().min()
Out[93]:
A 0.433985
B 0.314582
C 0.357096
D 0.531096
Length: 4, dtype: float64
Changes to eval#
In prior versions, new columns assignments in an eval
expression resulted
in an inplace change to the DataFrame
. (GH9297, GH8664, GH10486)
In [94]: df = pd.DataFrame({'a': np.linspace(0, 10, 5), 'b': range(5)})
In [95]: df
Out[95]:
a b
0 0.0 0
1 2.5 1
2 5.0 2
3 7.5 3
4 10.0 4
[5 rows x 2 columns]
In [12]: df.eval('c = a + b')
FutureWarning: eval expressions containing an assignment currentlydefault to operating inplace.
This will change in a future version of pandas, use inplace=True to avoid this warning.
In [13]: df
Out[13]:
a b c
0 0.0 0 0.0
1 2.5 1 3.5
2 5.0 2 7.0
3 7.5 3 10.5
4 10.0 4 14.0
In version 0.18.0, a new inplace
keyword was added to choose whether the
assignment should be done inplace or return a copy.
In [96]: df
Out[96]:
a b c
0 0.0 0 0.0
1 2.5 1 3.5
2 5.0 2 7.0
3 7.5 3 10.5
4 10.0 4 14.0
[5 rows x 3 columns]
In [97]: df.eval('d = c - b', inplace=False)
Out[97]:
a b c d
0 0.0 0 0.0 0.0
1 2.5 1 3.5 2.5
2 5.0 2 7.0 5.0
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0
[5 rows x 4 columns]
In [98]: df
Out[98]:
a b c
0 0.0 0 0.0
1 2.5 1 3.5
2 5.0 2 7.0
3 7.5 3 10.5
4 10.0 4 14.0
[5 rows x 3 columns]
In [99]: df.eval('d = c - b', inplace=True)
In [100]: df
Out[100]:
a b c d
0 0.0 0 0.0 0.0
1 2.5 1 3.5 2.5
2 5.0 2 7.0 5.0
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0
[5 rows x 4 columns]
Warning
For backwards compatibility, inplace
defaults to True
if not specified.
This will change in a future version of pandas. If your code depends on an
inplace assignment you should update to explicitly set inplace=True
The inplace
keyword parameter was also added the query
method.
In [101]: df.query('a > 5')
Out[101]:
a b c d
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0
[2 rows x 4 columns]
In [102]: df.query('a > 5', inplace=True)
In [103]: df
Out[103]:
a b c d
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0
[2 rows x 4 columns]
Warning
Note that the default value for inplace
in a query
is False
, which is consistent with prior versions.
eval
has also been updated to allow multi-line expressions for multiple
assignments. These expressions will be evaluated one at a time in order. Only
assignments are valid for multi-line expressions.
In [104]: df
Out[104]:
a b c d
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0
[2 rows x 4 columns]
In [105]: df.eval("""
.....: e = d + a
.....: f = e - 22
.....: g = f / 2.0""", inplace=True)
.....:
In [106]: df
Out[106]:
a b c d e f g
3 7.5 3 10.5 7.5 15.0 -7.0 -3.5
4 10.0 4 14.0 10.0 20.0 -2.0 -1.0
[2 rows x 7 columns]
Other API changes#
DataFrame.between_time
andSeries.between_time
now only parse a fixed set of time strings. Parsing of date strings is no longer supported and raises aValueError
. (GH11818)In [107]: s = pd.Series(range(10), pd.date_range('2015-01-01', freq='H', periods=10)) In [108]: s.between_time("7:00am", "9:00am") Out[108]: 2015-01-01 07:00:00 7 2015-01-01 08:00:00 8 2015-01-01 09:00:00 9 Freq: H, Length: 3, dtype: int64
This will now raise.
In [2]: s.between_time('20150101 07:00:00','20150101 09:00:00') ValueError: Cannot convert arg ['20150101 07:00:00'] to a time.
.memory_usage()
now includes values in the index, as does memory_usage in.info()
(GH11597)DataFrame.to_latex()
now supports non-ascii encodings (egutf-8
) in Python 2 with the parameterencoding
(GH7061)pandas.merge()
andDataFrame.merge()
will show a specific error message when trying to merge with an object that is not of typeDataFrame
or a subclass (GH12081)DataFrame.unstack
andSeries.unstack
now takefill_value
keyword to allow direct replacement of missing values when an unstack results in missing values in the resultingDataFrame
. As an added benefit, specifyingfill_value
will preserve the data type of the original stacked data. (GH9746)As part of the new API for window functions and resampling, aggregation functions have been clarified, raising more informative error messages on invalid aggregations. (GH9052). A full set of examples are presented in groupby.
Statistical functions for
NDFrame
objects (likesum(), mean(), min()
) will now raise if non-numpy-compatible arguments are passed in for**kwargs
(GH12301).to_latex
and.to_html
gain adecimal
parameter like.to_csv
; the default is'.'
(GH12031)More helpful error message when constructing a
DataFrame
with empty data but with indices (GH8020).describe()
will now properly handle bool dtype as a categorical (GH6625)More helpful error message with an invalid
.transform
with user defined input (GH10165)Exponentially weighted functions now allow specifying alpha directly (GH10789) and raise
ValueError
if parameters violate0 < alpha <= 1
(GH12492)
Deprecations#
The functions
pd.rolling_*
,pd.expanding_*
, andpd.ewm*
are deprecated and replaced by the corresponding method call. Note that the new suggested syntax includes all of the arguments (even if default) (GH11603)In [1]: s = pd.Series(range(3)) In [2]: pd.rolling_mean(s,window=2,min_periods=1) FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with Series.rolling(min_periods=1,window=2,center=False).mean() Out[2]: 0 0.0 1 0.5 2 1.5 dtype: float64 In [3]: pd.rolling_cov(s, s, window=2) FutureWarning: pd.rolling_cov is deprecated for Series and will be removed in a future version, replace with Series.rolling(window=2).cov(other=<Series>) Out[3]: 0 NaN 1 0.5 2 0.5 dtype: float64
The
freq
andhow
arguments to the.rolling
,.expanding
, and.ewm
(new) functions are deprecated, and will be removed in a future version. You can simply resample the input prior to creating a window function. (GH11603).For example, instead of
s.rolling(window=5,freq='D').max()
to get the max value on a rolling 5 Day window, one could uses.resample('D').mean().rolling(window=5).max()
, which first resamples the data to daily data, then provides a rolling 5 day window.pd.tseries.frequencies.get_offset_name
function is deprecated. Use offset’s.freqstr
property as alternative (GH11192)pandas.stats.fama_macbeth
routines are deprecated and will be removed in a future version (GH6077)pandas.stats.ols
,pandas.stats.plm
andpandas.stats.var
routines are deprecated and will be removed in a future version (GH6077)show a
FutureWarning
rather than aDeprecationWarning
on using long-time deprecated syntax inHDFStore.select
, where thewhere
clause is not a string-like (GH12027)The
pandas.options.display.mpl_style
configuration has been deprecated and will be removed in a future version of pandas. This functionality is better handled by matplotlib’s style sheets (GH11783).
Removal of deprecated float indexers#
In GH4892 indexing with floating point numbers on a non-Float64Index
was deprecated (in version 0.14.0).
In 0.18.0, this deprecation warning is removed and these will now raise a TypeError
. (GH12165, GH12333)
In [109]: s = pd.Series([1, 2, 3], index=[4, 5, 6])
In [110]: s
Out[110]:
4 1
5 2
6 3
Length: 3, dtype: int64
In [111]: s2 = pd.Series([1, 2, 3], index=list('abc'))
In [112]: s2
Out[112]:
a 1
b 2
c 3
Length: 3, dtype: int64
Previous behavior:
# this is label indexing
In [2]: s[5.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
Out[2]: 2
# this is positional indexing
In [3]: s.iloc[1.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
Out[3]: 2
# this is label indexing
In [4]: s.loc[5.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
Out[4]: 2
# .ix would coerce 1.0 to the positional 1, and index
In [5]: s2.ix[1.0] = 10
FutureWarning: scalar indexers for index type Index should be integers and not floating point
In [6]: s2
Out[6]:
a 1
b 10
c 3
dtype: int64
New behavior:
For iloc, getting & setting via a float scalar will always raise.
In [3]: s.iloc[2.0]
TypeError: cannot do label indexing on <class 'pandas.indexes.numeric.Int64Index'> with these indexers [2.0] of <type 'float'>
Other indexers will coerce to a like integer for both getting and setting. The FutureWarning
has been dropped for .loc
, .ix
and []
.
In [113]: s[5.0]
Out[113]: 2
In [114]: s.loc[5.0]
Out[114]: 2
and setting
In [115]: s_copy = s.copy()
In [116]: s_copy[5.0] = 10
In [117]: s_copy
Out[117]:
4 1
5 10
6 3
Length: 3, dtype: int64
In [118]: s_copy = s.copy()
In [119]: s_copy.loc[5.0] = 10
In [120]: s_copy
Out[120]:
4 1
5 10
6 3
Length: 3, dtype: int64
Positional setting with .ix
and a float indexer will ADD this value to the index, rather than previously setting the value by position.
In [3]: s2.ix[1.0] = 10
In [4]: s2
Out[4]:
a 1
b 2
c 3
1.0 10
dtype: int64
Slicing will also coerce integer-like floats to integers for a non-Float64Index
.
In [121]: s.loc[5.0:6]
Out[121]:
5 2
6 3
Length: 2, dtype: int64
Note that for floats that are NOT coercible to ints, the label based bounds will be excluded
In [122]: s.loc[5.1:6]
Out[122]:
6 3
Length: 1, dtype: int64
Float indexing on a Float64Index
is unchanged.
In [123]: s = pd.Series([1, 2, 3], index=np.arange(3.))
In [124]: s[1.0]
Out[124]: 2
In [125]: s[1.0:2.5]
Out[125]:
1.0 2
2.0 3
Length: 2, dtype: int64
Removal of prior version deprecations/changes#
Removal of
rolling_corr_pairwise
in favor of.rolling().corr(pairwise=True)
(GH4950)Removal of
expanding_corr_pairwise
in favor of.expanding().corr(pairwise=True)
(GH4950)Removal of
DataMatrix
module. This was not imported into the pandas namespace in any event (GH12111)Removal of
cols
keyword in favor ofsubset
inDataFrame.duplicated()
andDataFrame.drop_duplicates()
(GH6680)Removal of the
read_frame
andframe_query
(both aliases forpd.read_sql
) andwrite_frame
(alias ofto_sql
) functions in thepd.io.sql
namespace, deprecated since 0.14.0 (GH6292).Removal of the
order
keyword from.factorize()
(GH6930)
Performance improvements#
Improved performance of
andrews_curves
(GH11534)Improved huge
DatetimeIndex
,PeriodIndex
andTimedeltaIndex
’s ops performance includingNaT
(GH10277)Improved performance of
pandas.concat
(GH11958)Improved performance of
StataReader
(GH11591)Improved performance in construction of
Categoricals
withSeries
of datetimes containingNaT
(GH12077)Improved performance of ISO 8601 date parsing for dates without separators (GH11899), leading zeros (GH11871) and with white space preceding the time zone (GH9714)
Bug fixes#
Bug in
GroupBy.size
when data-frame is empty. (GH11699)Bug in
Period.end_time
when a multiple of time period is requested (GH11738)Regression in
.clip
with tz-aware datetimes (GH11838)Bug in
date_range
when the boundaries fell on the frequency (GH11804, GH12409)Bug in consistency of passing nested dicts to
.groupby(...).agg(...)
(GH9052)Accept unicode in
Timedelta
constructor (GH11995)Bug in value label reading for
StataReader
when reading incrementally (GH12014)Bug in vectorized
DateOffset
whenn
parameter is0
(GH11370)Compat for numpy 1.11 w.r.t.
NaT
comparison changes (GH12049)Bug in
read_csv
when reading from aStringIO
in threads (GH11790)Bug in not treating
NaT
as a missing value in datetimelikes when factorizing & withCategoricals
(GH12077)Bug in getitem when the values of a
Series
were tz-aware (GH12089)Bug in
Series.str.get_dummies
when one of the variables was ‘name’ (GH12180)Bug in
pd.concat
while concatenating tz-aware NaT series. (GH11693, GH11755, GH12217)Bug in
pd.read_stata
with version <= 108 files (GH12232)Bug in
Series.resample
using a frequency ofNano
when the index is aDatetimeIndex
and contains non-zero nanosecond parts (GH12037)Bug in resampling with
.nunique
and a sparse index (GH12352)Removed some compiler warnings (GH12471)
Work around compat issues with
boto
in python 3.5 (GH11915)Bug in
NaT
subtraction fromTimestamp
orDatetimeIndex
with timezones (GH11718)Bug in subtraction of
Series
of a single tz-awareTimestamp
(GH12290)Use compat iterators in PY2 to support
.next()
(GH12299)Bug in
Timedelta.round
with negative values (GH11690)Bug in
.loc
againstCategoricalIndex
may result in normalIndex
(GH11586)Bug in
DataFrame.info
when duplicated column names exist (GH11761)Bug in
.copy
of datetime tz-aware objects (GH11794)Bug in
Series.apply
andSeries.map
wheretimedelta64
was not boxed (GH11349)Bug in
DataFrame.set_index()
with tz-awareSeries
(GH12358)Bug in subclasses of
DataFrame
whereAttributeError
did not propagate (GH11808)Bug groupby on tz-aware data where selection not returning
Timestamp
(GH11616)Bug in
pd.read_clipboard
andpd.to_clipboard
functions not supporting Unicode; upgrade includedpyperclip
to v1.5.15 (GH9263)Bug in
DataFrame.query
containing an assignment (GH8664)Bug in
from_msgpack
where__contains__()
fails for columns of the unpackedDataFrame
, if theDataFrame
has object columns. (GH11880)Bug in
.resample
on categorical data withTimedeltaIndex
(GH12169)Bug in timezone info lost when broadcasting scalar datetime to
DataFrame
(GH11682)Bug in
Index
creation fromTimestamp
with mixed tz coerces to UTC (GH11488)Bug in
to_numeric
where it does not raise if input is more than one dimension (GH11776)Bug in parsing timezone offset strings with non-zero minutes (GH11708)
Bug in
df.plot
using incorrect colors for bar plots under matplotlib 1.5+ (GH11614)Bug in the
groupby
plot
method when using keyword arguments (GH11805).Bug in
DataFrame.duplicated
anddrop_duplicates
causing spurious matches when settingkeep=False
(GH11864)Bug in
.loc
result with duplicated key may haveIndex
with incorrect dtype (GH11497)Bug in
pd.rolling_median
where memory allocation failed even with sufficient memory (GH11696)Bug in
DataFrame.style
with spurious zeros (GH12134)Bug in
DataFrame.style
with integer columns not starting at 0 (GH12125)Bug in
.style.bar
may not rendered properly using specific browser (GH11678)Bug in rich comparison of
Timedelta
with anumpy.array
ofTimedelta
that caused an infinite recursion (GH11835)Bug in
DataFrame.round
dropping column index name (GH11986)Bug in
df.replace
while replacing value in mixed dtypeDataframe
(GH11698)Bug in
Index
prevents copying name of passedIndex
, when a new name is not provided (GH11193)Bug in
read_excel
failing to read any non-empty sheets when empty sheets exist andsheetname=None
(GH11711)Bug in
read_excel
failing to raiseNotImplemented
error when keywordsparse_dates
anddate_parser
are provided (GH11544)Bug in
read_sql
withpymysql
connections failing to return chunked data (GH11522)Bug in
.to_csv
ignoring formatting parametersdecimal
,na_rep
,float_format
for float indexes (GH11553)Bug in
Int64Index
andFloat64Index
preventing the use of the modulo operator (GH9244)Bug in
MultiIndex.drop
for not lexsorted MultiIndexes (GH12078)Bug in
DataFrame
when masking an emptyDataFrame
(GH11859)Bug in
.plot
potentially modifying thecolors
input when the number of columns didn’t match the number of series provided (GH12039).Bug in
Series.plot
failing when index has aCustomBusinessDay
frequency (GH7222).Bug in
.to_sql
fordatetime.time
values with sqlite fallback (GH8341)Bug in
read_excel
failing to read data with one column whensqueeze=True
(GH12157)Bug in
read_excel
failing to read one empty column (GH12292, GH9002)Bug in
.groupby
where aKeyError
was not raised for a wrong column if there was only one row in the dataframe (GH11741)Bug in
.read_csv
with dtype specified on empty data producing an error (GH12048)Bug in
.read_csv
where strings like'2E'
are treated as valid floats (GH12237)Bug in building pandas with debugging symbols (GH12123)
Removed
millisecond
property ofDatetimeIndex
. This would always raise aValueError
(GH12019).Bug in
Series
constructor with read-only data (GH11502)Removed
pandas._testing.choice()
. Should usenp.random.choice()
, instead. (GH12386)Bug in
.loc
setitem indexer preventing the use of a TZ-aware DatetimeIndex (GH12050)Bug in
.style
indexes and MultiIndexes not appearing (GH11655)Bug in
to_msgpack
andfrom_msgpack
which did not correctly serialize or deserializeNaT
(GH12307).Bug in
.skew
and.kurt
due to roundoff error for highly similar values (GH11974)Bug in
Timestamp
constructor where microsecond resolution was lost if HHMMSS were not separated with ‘:’ (GH10041)Bug in
buffer_rd_bytes
src->buffer could be freed more than once if reading failed, causing a segfault (GH12098)Bug in
crosstab
where arguments with non-overlapping indexes would return aKeyError
(GH10291)Bug in
DataFrame.apply
in which reduction was not being prevented for cases in whichdtype
was not a numpy dtype (GH12244)Bug when initializing categorical series with a scalar value. (GH12336)
Bug when specifying a UTC
DatetimeIndex
by settingutc=True
in.to_datetime
(GH11934)Bug when increasing the buffer size of CSV reader in
read_csv
(GH12494)Bug when setting columns of a
DataFrame
with duplicate column names (GH12344)
Contributors#
A total of 101 people contributed patches to this release. People with a “+” by their names contributed a patch for the first time.
ARF +
Alex Alekseyev +
Andrew McPherson +
Andrew Rosenfeld
Andy Hayden
Anthonios Partheniou
Anton I. Sipos
Ben +
Ben North +
Bran Yang +
Chris
Chris Carroux +
Christopher C. Aycock +
Christopher Scanlin +
Cody +
Da Wang +
Daniel Grady +
Dorozhko Anton +
Dr-Irv +
Erik M. Bray +
Evan Wright
Francis T. O’Donovan +
Frank Cleary +
Gianluca Rossi
Graham Jeffries +
Guillaume Horel
Henry Hammond +
Isaac Schwabacher +
Jean-Mathieu Deschenes
Jeff Reback
Joe Jevnik +
John Freeman +
John Fremlin +
Jonas Hoersch +
Joris Van den Bossche
Joris Vankerschaver
Justin Lecher
Justin Lin +
Ka Wo Chen
Keming Zhang +
Kerby Shedden
Kyle +
Marco Farrugia +
MasonGallo +
MattRijk +
Matthew Lurie +
Maximilian Roos
Mayank Asthana +
Mortada Mehyar
Moussa Taifi +
Navreet Gill +
Nicolas Bonnotte
Paul Reiners +
Philip Gura +
Pietro Battiston
RahulHP +
Randy Carnevale
Rinoc Johnson
Rishipuri +
Sangmin Park +
Scott E Lasley
Sereger13 +
Shannon Wang +
Skipper Seabold
Thierry Moisan
Thomas A Caswell
Toby Dylan Hocking +
Tom Augspurger
Travis +
Trent Hauck
Tux1
Varun
Wes McKinney
Will Thompson +
Yoav Ram
Yoong Kang Lim +
Yoshiki Vázquez Baeza
Young Joong Kim +
Younggun Kim
Yuval Langer +
alex argunov +
behzad nouri
boombard +
brian-pantano +
chromy +
daniel +
dgram0 +
gfyoung +
hack-c +
hcontrast +
jfoo +
kaustuv deolal +
llllllllll
ranarag +
rockg
scls19fr
seales +
sinhrks
srib +
surveymedia.ca +
tworec +