Version 0.15.0 (October 18, 2014)#
This is a major release from 0.14.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
Warning
pandas >= 0.15.0 will no longer support compatibility with NumPy versions < 1.7.0. If you want to use the latest versions of pandas, please upgrade to NumPy >= 1.7.0 (GH7711)
- Highlights include: - The - Categoricaltype was integrated as a first-class pandas type, see here
- New scalar type - Timedelta, and a new index type- TimedeltaIndex, see here
- New datetimelike properties accessor - .dtfor Series, see Datetimelike Properties
- New DataFrame default display for - df.info()to include memory usage, see Memory Usage
- read_csvwill now by default ignore blank lines when parsing, see here
- API change in using Indexes in set operations, see here 
- Enhancements in the handling of timezones, see here 
- A lot of improvements to the rolling and expanding moment functions, see here 
- Internal refactoring of the - Indexclass to no longer sub-class- ndarray, see Internal Refactoring
- dropping support for - PyTablesless than version 3.0.0, and- numexprless than version 2.1 (GH7990)
- Split indexing documentation into Indexing and Selecting Data and MultiIndex / Advanced Indexing 
- Split out string methods documentation into Working with Text Data 
 
- Check the API Changes and deprecations before updating 
Warning
In 0.15.0 Index has internally been refactored to no longer sub-class ndarray
but instead subclass PandasObject, similarly to the rest of the pandas objects. This change allows very easy sub-classing and creation of new index types. This should be
a transparent change with only very limited API implications (See the Internal Refactoring)
Warning
The refactoring in Categorical changed the two argument constructor from
“codes/labels and levels” to “values and levels (now called ‘categories’)”. This can lead to subtle bugs. If you use
Categorical directly, please audit your code before updating to this pandas
version and change it to use the from_codes() constructor. See more on Categorical here
New features#
Categoricals in Series/DataFrame#
Categorical can now be included in Series and DataFrames and gained new
methods to manipulate. Thanks to Jan Schulz for much of this API/implementation. (GH3943, GH5313, GH5314,
GH7444, GH7839, GH7848, GH7864, GH7914, GH7768, GH8006, GH3678,
GH8075, GH8076, GH8143, GH8453, GH8518).
For full docs, see the categorical introduction and the API documentation.
In [1]: df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6],
   ...:                    "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']})
   ...: 
In [2]: df["grade"] = df["raw_grade"].astype("category")
In [3]: df["grade"]
Out[3]: 
0    a
1    b
2    b
3    a
4    a
5    e
Name: grade, Length: 6, dtype: category
Categories (3, object): ['a', 'b', 'e']
# Rename the categories
In [4]: df["grade"].cat.categories = ["very good", "good", "very bad"]
# Reorder the categories and simultaneously add the missing categories
In [5]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad",
   ...:                                               "medium", "good", "very good"])
   ...: 
In [6]: df["grade"]
Out[6]: 
0    very good
1         good
2         good
3    very good
4    very good
5     very bad
Name: grade, Length: 6, dtype: category
Categories (5, object): ['very bad', 'bad', 'medium', 'good', 'very good']
In [7]: df.sort_values("grade")
Out[7]: 
   id raw_grade      grade
5   6         e   very bad
1   2         b       good
2   3         b       good
0   1         a  very good
3   4         a  very good
4   5         a  very good
[6 rows x 3 columns]
In [8]: df.groupby("grade").size()
Out[8]: 
grade
very bad     1
bad          0
medium       0
good         2
very good    3
Length: 5, dtype: int64
- pandas.core.group_aggand- pandas.core.factor_aggwere removed. As an alternative, construct a dataframe and use- df.groupby(<group>).agg(<func>).
- Supplying “codes/labels and levels” to the - Categoricalconstructor is not supported anymore. Supplying two arguments to the constructor is now interpreted as “values and levels (now called ‘categories’)”. Please change your code to use the- from_codes()constructor.
- The - Categorical.labelsattribute was renamed to- Categorical.codesand is read only. If you want to manipulate codes, please use one of the API methods on Categoricals.
- The - Categorical.levelsattribute is renamed to- Categorical.categories.
TimedeltaIndex/scalar#
We introduce a new scalar type Timedelta, which is a subclass of datetime.timedelta, and behaves in a similar manner,
but allows compatibility with np.timedelta64 types as well as a host of custom representation, parsing, and attributes.
This type is very similar to how Timestamp works for datetimes. It is a nice-API box for the type. See the docs.
(GH3009, GH4533, GH8209, GH8187, GH8190, GH7869, GH7661, GH8345, GH8471)
Warning
Timedelta scalars (and TimedeltaIndex) component fields are not the same as the component fields on a datetime.timedelta object. For example, .seconds on a datetime.timedelta object returns the total number of seconds combined between hours, minutes and seconds. In contrast, the pandas Timedelta breaks out hours, minutes, microseconds and nanoseconds separately.
# Timedelta accessor
In [9]: tds = pd.Timedelta('31 days 5 min 3 sec')
In [10]: tds.minutes
Out[10]: 5L
In [11]: tds.seconds
Out[11]: 3L
# datetime.timedelta accessor
# this is 5 minutes * 60 + 3 seconds
In [12]: tds.to_pytimedelta().seconds
Out[12]: 303
Note: this is no longer true starting from v0.16.0, where full
compatibility with datetime.timedelta is introduced. See the
0.16.0 whatsnew entry
Warning
Prior to 0.15.0 pd.to_timedelta would return a Series for list-like/Series input, and a np.timedelta64 for scalar input.
It will now return a TimedeltaIndex for list-like input, Series for Series input, and Timedelta for scalar input.
The arguments to pd.to_timedelta are now (arg,unit='ns',box=True,coerce=False), previously were (arg,box=True,unit='ns') as these are more logical.
Construct a scalar
In [9]: pd.Timedelta('1 days 06:05:01.00003')
Out[9]: Timedelta('1 days 06:05:01.000030')
In [10]: pd.Timedelta('15.5us')
Out[10]: Timedelta('0 days 00:00:00.000015500')
In [11]: pd.Timedelta('1 hour 15.5us')
Out[11]: Timedelta('0 days 01:00:00.000015500')
# negative Timedeltas have this string repr
# to be more consistent with datetime.timedelta conventions
In [12]: pd.Timedelta('-1us')
Out[12]: Timedelta('-1 days +23:59:59.999999')
# a NaT
In [13]: pd.Timedelta('nan')
Out[13]: NaT
Access fields for a Timedelta
In [14]: td = pd.Timedelta('1 hour 3m 15.5us')
In [15]: td.seconds
Out[15]: 3780
In [16]: td.microseconds
Out[16]: 15
In [17]: td.nanoseconds
Out[17]: 500
Construct a TimedeltaIndex
In [18]: pd.TimedeltaIndex(['1 days', '1 days, 00:00:05',
   ....:                    np.timedelta64(2, 'D'),
   ....:                    datetime.timedelta(days=2, seconds=2)])
   ....: 
Out[18]: 
TimedeltaIndex(['1 days 00:00:00', '1 days 00:00:05', '2 days 00:00:00',
                '2 days 00:00:02'],
               dtype='timedelta64[ns]', freq=None)
Constructing a TimedeltaIndex with a regular range
In [19]: pd.timedelta_range('1 days', periods=5, freq='D')
Out[19]: TimedeltaIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], dtype='timedelta64[ns]', freq='D')
In [20]: pd.timedelta_range(start='1 days', end='2 days', freq='30T')
Out[20]: 
TimedeltaIndex(['1 days 00:00:00', '1 days 00:30:00', '1 days 01:00:00',
                '1 days 01:30:00', '1 days 02:00:00', '1 days 02:30:00',
                '1 days 03:00:00', '1 days 03:30:00', '1 days 04:00:00',
                '1 days 04:30:00', '1 days 05:00:00', '1 days 05:30:00',
                '1 days 06:00:00', '1 days 06:30:00', '1 days 07:00:00',
                '1 days 07:30:00', '1 days 08:00:00', '1 days 08:30:00',
                '1 days 09:00:00', '1 days 09:30:00', '1 days 10:00:00',
                '1 days 10:30:00', '1 days 11:00:00', '1 days 11:30:00',
                '1 days 12:00:00', '1 days 12:30:00', '1 days 13:00:00',
                '1 days 13:30:00', '1 days 14:00:00', '1 days 14:30:00',
                '1 days 15:00:00', '1 days 15:30:00', '1 days 16:00:00',
                '1 days 16:30:00', '1 days 17:00:00', '1 days 17:30:00',
                '1 days 18:00:00', '1 days 18:30:00', '1 days 19:00:00',
                '1 days 19:30:00', '1 days 20:00:00', '1 days 20:30:00',
                '1 days 21:00:00', '1 days 21:30:00', '1 days 22:00:00',
                '1 days 22:30:00', '1 days 23:00:00', '1 days 23:30:00',
                '2 days 00:00:00'],
               dtype='timedelta64[ns]', freq='30T')
You can now use a TimedeltaIndex as the index of a pandas object
In [21]: s = pd.Series(np.arange(5),
   ....:               index=pd.timedelta_range('1 days', periods=5, freq='s'))
   ....: 
In [22]: s
Out[22]: 
1 days 00:00:00    0
1 days 00:00:01    1
1 days 00:00:02    2
1 days 00:00:03    3
1 days 00:00:04    4
Freq: S, Length: 5, dtype: int64
You can select with partial string selections
In [23]: s['1 day 00:00:02']
Out[23]: 2
In [24]: s['1 day':'1 day 00:00:02']
Out[24]: 
1 days 00:00:00    0
1 days 00:00:01    1
1 days 00:00:02    2
Freq: S, Length: 3, dtype: int64
Finally, the combination of TimedeltaIndex with DatetimeIndex allow certain combination operations that are NaT preserving:
In [25]: tdi = pd.TimedeltaIndex(['1 days', pd.NaT, '2 days'])
In [26]: tdi.tolist()
Out[26]: [Timedelta('1 days 00:00:00'), NaT, Timedelta('2 days 00:00:00')]
In [27]: dti = pd.date_range('20130101', periods=3)
In [28]: dti.tolist()
Out[28]: 
[Timestamp('2013-01-01 00:00:00', freq='D'),
 Timestamp('2013-01-02 00:00:00', freq='D'),
 Timestamp('2013-01-03 00:00:00', freq='D')]
In [29]: (dti + tdi).tolist()
Out[29]: [Timestamp('2013-01-02 00:00:00'), NaT, Timestamp('2013-01-05 00:00:00')]
In [30]: (dti - tdi).tolist()
Out[30]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')]
- iteration of a - Seriese.g.- list(Series(...))of- timedelta64[ns]would prior to v0.15.0 return- np.timedelta64for each element. These will now be wrapped in- Timedelta.
Memory usage#
Implemented methods to find memory usage of a DataFrame. See the FAQ for more. (GH6852).
A new display option display.memory_usage (see Options and settings) sets the default behavior of the memory_usage argument in the df.info() method. By default display.memory_usage is True.
In [31]: dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]',
   ....:           'complex128', 'object', 'bool']
   ....: 
In [32]: n = 5000
In [33]: data = {t: np.random.randint(100, size=n).astype(t) for t in dtypes}
In [34]: df = pd.DataFrame(data)
In [35]: df['categorical'] = df['object'].astype('category')
In [36]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 8 columns):
 #   Column           Non-Null Count  Dtype          
---  ------           --------------  -----          
 0   int64            5000 non-null   int64          
 1   float64          5000 non-null   float64        
 2   datetime64[ns]   5000 non-null   datetime64[ns] 
 3   timedelta64[ns]  5000 non-null   timedelta64[ns]
 4   complex128       5000 non-null   complex128     
 5   object           5000 non-null   object         
 6   bool             5000 non-null   bool           
 7   categorical      5000 non-null   category       
dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1), object(1), timedelta64[ns](1)
memory usage: 288.2+ KB
Additionally memory_usage() is an available method for a dataframe object which returns the memory usage of each column.
In [37]: df.memory_usage(index=True)
Out[37]: 
Index                128
int64              40000
float64            40000
datetime64[ns]     40000
timedelta64[ns]    40000
complex128         80000
object             40000
bool                5000
categorical         9968
Length: 9, dtype: int64
Series.dt accessor#
Series has gained an accessor to succinctly return datetime like properties for the values of the Series, if its a datetime/period like Series. (GH7207)
This will return a Series, indexed like the existing Series. See the docs
# datetime
In [38]: s = pd.Series(pd.date_range('20130101 09:10:12', periods=4))
In [39]: s
Out[39]: 
0   2013-01-01 09:10:12
1   2013-01-02 09:10:12
2   2013-01-03 09:10:12
3   2013-01-04 09:10:12
Length: 4, dtype: datetime64[ns]
In [40]: s.dt.hour
Out[40]: 
0    9
1    9
2    9
3    9
Length: 4, dtype: int64
In [41]: s.dt.second
Out[41]: 
0    12
1    12
2    12
3    12
Length: 4, dtype: int64
In [42]: s.dt.day
Out[42]: 
0    1
1    2
2    3
3    4
Length: 4, dtype: int64
In [43]: s.dt.freq
Out[43]: 'D'
This enables nice expressions like this:
In [44]: s[s.dt.day == 2]
Out[44]: 
1   2013-01-02 09:10:12
Length: 1, dtype: datetime64[ns]
You can easily produce tz aware transformations:
In [45]: stz = s.dt.tz_localize('US/Eastern')
In [46]: stz
Out[46]: 
0   2013-01-01 09:10:12-05:00
1   2013-01-02 09:10:12-05:00
2   2013-01-03 09:10:12-05:00
3   2013-01-04 09:10:12-05:00
Length: 4, dtype: datetime64[ns, US/Eastern]
In [47]: stz.dt.tz
Out[47]: <DstTzInfo 'US/Eastern' LMT-1 day, 19:04:00 STD>
You can also chain these types of operations:
In [48]: s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Out[48]: 
0   2013-01-01 04:10:12-05:00
1   2013-01-02 04:10:12-05:00
2   2013-01-03 04:10:12-05:00
3   2013-01-04 04:10:12-05:00
Length: 4, dtype: datetime64[ns, US/Eastern]
The .dt accessor works for period and timedelta dtypes.
# period
In [49]: s = pd.Series(pd.period_range('20130101', periods=4, freq='D'))
In [50]: s
Out[50]: 
0    2013-01-01
1    2013-01-02
2    2013-01-03
3    2013-01-04
Length: 4, dtype: period[D]
In [51]: s.dt.year
Out[51]: 
0    2013
1    2013
2    2013
3    2013
Length: 4, dtype: int64
In [52]: s.dt.day
Out[52]: 
0    1
1    2
2    3
3    4
Length: 4, dtype: int64
# timedelta
In [53]: s = pd.Series(pd.timedelta_range('1 day 00:00:05', periods=4, freq='s'))
In [54]: s
Out[54]: 
0   1 days 00:00:05
1   1 days 00:00:06
2   1 days 00:00:07
3   1 days 00:00:08
Length: 4, dtype: timedelta64[ns]
In [55]: s.dt.days
Out[55]: 
0    1
1    1
2    1
3    1
Length: 4, dtype: int64
In [56]: s.dt.seconds
Out[56]: 
0    5
1    6
2    7
3    8
Length: 4, dtype: int64
In [57]: s.dt.components
Out[57]: 
   days  hours  minutes  seconds  milliseconds  microseconds  nanoseconds
0     1      0        0        5             0             0            0
1     1      0        0        6             0             0            0
2     1      0        0        7             0             0            0
3     1      0        0        8             0             0            0
[4 rows x 7 columns]
Timezone handling improvements#
- tz_localize(None)for tz-aware- Timestampand- DatetimeIndexnow removes timezone holding local time, previously this resulted in- Exceptionor- TypeError(GH7812)- In [58]: ts = pd.Timestamp('2014-08-01 09:00', tz='US/Eastern') In [59]: ts Out[59]: Timestamp('2014-08-01 09:00:00-0400', tz='US/Eastern') In [60]: ts.tz_localize(None) Out[60]: Timestamp('2014-08-01 09:00:00') In [61]: didx = pd.date_range(start='2014-08-01 09:00', freq='H', ....: periods=10, tz='US/Eastern') ....: In [62]: didx Out[62]: DatetimeIndex(['2014-08-01 09:00:00-04:00', '2014-08-01 10:00:00-04:00', '2014-08-01 11:00:00-04:00', '2014-08-01 12:00:00-04:00', '2014-08-01 13:00:00-04:00', '2014-08-01 14:00:00-04:00', '2014-08-01 15:00:00-04:00', '2014-08-01 16:00:00-04:00', '2014-08-01 17:00:00-04:00', '2014-08-01 18:00:00-04:00'], dtype='datetime64[ns, US/Eastern]', freq='H') In [63]: didx.tz_localize(None) Out[63]: DatetimeIndex(['2014-08-01 09:00:00', '2014-08-01 10:00:00', '2014-08-01 11:00:00', '2014-08-01 12:00:00', '2014-08-01 13:00:00', '2014-08-01 14:00:00', '2014-08-01 15:00:00', '2014-08-01 16:00:00', '2014-08-01 17:00:00', '2014-08-01 18:00:00'], dtype='datetime64[ns]', freq=None) 
- tz_localizenow accepts the- ambiguouskeyword which allows for passing an array of bools indicating whether the date belongs in DST or not, ‘NaT’ for setting transition times to NaT, ‘infer’ for inferring DST/non-DST, and ‘raise’ (default) for an- AmbiguousTimeErrorto be raised. See the docs for more details (GH7943)
- DataFrame.tz_localizeand- DataFrame.tz_convertnow accepts an optional- levelargument for localizing a specific level of a MultiIndex (GH7846)
- Timestamp.tz_localizeand- Timestamp.tz_convertnow raise- TypeErrorin error cases, rather than- Exception(GH8025)
- a timeseries/index localized to UTC when inserted into a Series/DataFrame will preserve the UTC timezone (rather than being a naive - datetime64[ns]) as- objectdtype (GH8411)
- Timestamp.__repr__displays- dateutil.tz.tzoffsetinfo (GH7907)
Rolling/expanding moments improvements#
- rolling_min(),- rolling_max(),- rolling_cov(), and- rolling_corr()now return objects with all- NaNwhen- len(arg) < min_periods <= windowrather than raising. (This makes all rolling functions consistent in this behavior). (GH7766)- Prior to 0.15.0 - In [64]: s = pd.Series([10, 11, 12, 13]) - In [15]: pd.rolling_min(s, window=10, min_periods=5) ValueError: min_periods (5) must be <= window (4) - New behavior - In [4]: pd.rolling_min(s, window=10, min_periods=5) Out[4]: 0 NaN 1 NaN 2 NaN 3 NaN dtype: float64 
- rolling_max(),- rolling_min(),- rolling_sum(),- rolling_mean(),- rolling_median(),- rolling_std(),- rolling_var(),- rolling_skew(),- rolling_kurt(),- rolling_quantile(),- rolling_cov(),- rolling_corr(),- rolling_corr_pairwise(),- rolling_window(), and- rolling_apply()with- center=Truepreviously would return a result of the same structure as the input- argwith- NaNin the final- (window-1)/2entries.- Now the final - (window-1)/2entries of the result are calculated as if the input- argwere followed by- (window-1)/2- NaNvalues (or with shrinking windows, in the case of- rolling_apply()). (GH7925, GH8269)- Prior behavior (note final value is - NaN):- In [7]: pd.rolling_sum(Series(range(4)), window=3, min_periods=0, center=True) Out[7]: 0 1 1 3 2 6 3 NaN dtype: float64 - New behavior (note final value is - 5 = sum([2, 3, NaN])):- In [7]: pd.rolling_sum(pd.Series(range(4)), window=3, ....: min_periods=0, center=True) Out[7]: 0 1 1 3 2 6 3 5 dtype: float64 
- rolling_window()now normalizes the weights properly in rolling mean mode (mean=True) so that the calculated weighted means (e.g. ‘triang’, ‘gaussian’) are distributed about the same means as those calculated without weighting (i.e. ‘boxcar’). See the note on normalization for further details. (GH7618)- In [65]: s = pd.Series([10.5, 8.8, 11.4, 9.7, 9.3]) - Behavior prior to 0.15.0: - In [39]: pd.rolling_window(s, window=3, win_type='triang', center=True) Out[39]: 0 NaN 1 6.583333 2 6.883333 3 6.683333 4 NaN dtype: float64 - New behavior - In [10]: pd.rolling_window(s, window=3, win_type='triang', center=True) Out[10]: 0 NaN 1 9.875 2 10.325 3 10.025 4 NaN dtype: float64 
- Removed - centerargument from all- expanding_functions (see list), as the results produced when- center=Truedid not make much sense. (GH7925)
- Added optional - ddofargument to- expanding_cov()and- rolling_cov(). The default value of- 1is backwards-compatible. (GH8279)
- Documented the - ddofargument to- expanding_var(),- expanding_std(),- rolling_var(), and- rolling_std(). These functions’ support of a- ddofargument (with a default value of- 1) was previously undocumented. (GH8064)
- ewma(),- ewmstd(),- ewmvol(),- ewmvar(),- ewmcov(), and- ewmcorr()now interpret- min_periodsin the same manner that the- rolling_*()and- expanding_*()functions do: a given result entry will be- NaNif the (expanding, in this case) window does not contain at least- min_periodsvalues. The previous behavior was to set to- NaNthe- min_periodsentries starting with the first non-- NaNvalue. (GH7977)- Prior behavior (note values start at index - 2, which is- min_periodsafter index- 0(the index of the first non-empty value)):- In [66]: s = pd.Series([1, None, None, None, 2, 3]) - In [51]: ewma(s, com=3., min_periods=2) Out[51]: 0 NaN 1 NaN 2 1.000000 3 1.000000 4 1.571429 5 2.189189 dtype: float64 - New behavior (note values start at index - 4, the location of the 2nd (since- min_periods=2) non-empty value):- In [2]: pd.ewma(s, com=3., min_periods=2) Out[2]: 0 NaN 1 NaN 2 NaN 3 NaN 4 1.759644 5 2.383784 dtype: float64 
- ewmstd(),- ewmvol(),- ewmvar(),- ewmcov(), and- ewmcorr()now have an optional- adjustargument, just like- ewma()does, affecting how the weights are calculated. The default value of- adjustis- True, which is backwards-compatible. See Exponentially weighted moment functions for details. (GH7911)
- ewma(),- ewmstd(),- ewmvol(),- ewmvar(),- ewmcov(), and- ewmcorr()now have an optional- ignore_naargument. When- ignore_na=False(the default), missing values are taken into account in the weights calculation. When- ignore_na=True(which reproduces the pre-0.15.0 behavior), missing values are ignored in the weights calculation. (GH7543)- In [7]: pd.ewma(pd.Series([None, 1., 8.]), com=2.) Out[7]: 0 NaN 1 1.0 2 5.2 dtype: float64 In [8]: pd.ewma(pd.Series([1., None, 8.]), com=2., ....: ignore_na=True) # pre-0.15.0 behavior Out[8]: 0 1.0 1 1.0 2 5.2 dtype: float64 In [9]: pd.ewma(pd.Series([1., None, 8.]), com=2., ....: ignore_na=False) # new default Out[9]: 0 1.000000 1 1.000000 2 5.846154 dtype: float64 - Warning - By default ( - ignore_na=False) the- ewm*()functions’ weights calculation in the presence of missing values is different than in pre-0.15.0 versions. To reproduce the pre-0.15.0 calculation of weights in the presence of missing values one must specify explicitly- ignore_na=True.
- Bug in - expanding_cov(),- expanding_corr(),- rolling_cov(),- rolling_cor(),- ewmcov(), and- ewmcorr()returning results with columns sorted by name and producing an error for non-unique columns; now handles non-unique columns and returns columns in original order (except for the case of two DataFrames with- pairwise=False, where behavior is unchanged) (GH7542)
- Bug in - rolling_count()and- expanding_*()functions unnecessarily producing error message for zero-length data (GH8056)
- Bug in - rolling_apply()and- expanding_apply()interpreting- min_periods=0as- min_periods=1(GH8080)
- Bug in - expanding_std()and- expanding_var()for a single value producing a confusing error message (GH7900)
- Bug in - rolling_std()and- rolling_var()for a single value producing- 0rather than- NaN(GH7900)
- Bug in - ewmstd(),- ewmvol(),- ewmvar(), and- ewmcov()calculation of de-biasing factors when- bias=False(the default). Previously an incorrect constant factor was used, based on- adjust=True,- ignore_na=True, and an infinite number of observations. Now a different factor is used for each entry, based on the actual weights (analogous to the usual- N/(N-1)factor). In particular, for a single point a value of- NaNis returned when- bias=False, whereas previously a value of (approximately)- 0was returned.- For example, consider the following pre-0.15.0 results for - ewmvar(..., bias=False), and the corresponding debiasing factors:- In [67]: s = pd.Series([1., 2., 0., 4.]) - In [89]: ewmvar(s, com=2., bias=False) Out[89]: 0 -2.775558e-16 1 3.000000e-01 2 9.556787e-01 3 3.585799e+00 dtype: float64 In [90]: ewmvar(s, com=2., bias=False) / ewmvar(s, com=2., bias=True) Out[90]: 0 1.25 1 1.25 2 1.25 3 1.25 dtype: float64 - Note that entry - 0is approximately 0, and the debiasing factors are a constant 1.25. By comparison, the following 0.15.0 results have a- NaNfor entry- 0, and the debiasing factors are decreasing (towards 1.25):- In [14]: pd.ewmvar(s, com=2., bias=False) Out[14]: 0 NaN 1 0.500000 2 1.210526 3 4.089069 dtype: float64 In [15]: pd.ewmvar(s, com=2., bias=False) / pd.ewmvar(s, com=2., bias=True) Out[15]: 0 NaN 1 2.083333 2 1.583333 3 1.425439 dtype: float64 - See Exponentially weighted moment functions for details. (GH7912) 
Improvements in the SQL IO module#
- Added support for a - chunksizeparameter to- to_sqlfunction. This allows DataFrame to be written in chunks and avoid packet-size overflow errors (GH8062).
- Added support for a - chunksizeparameter to- read_sqlfunction. Specifying this argument will return an iterator through chunks of the query result (GH2908).
- Added support for writing - datetime.dateand- datetime.timeobject columns with- to_sql(GH6932).
- Added support for specifying a - schemato read from/write to with- read_sql_tableand- to_sql(GH7441, GH7952). For example:- df.to_sql('table', engine, schema='other_schema') # noqa F821 pd.read_sql_table('table', engine, schema='other_schema') # noqa F821 
- Added support for writing - NaNvalues with- to_sql(GH2754).
- Added support for writing datetime64 columns with - to_sqlfor all database flavors (GH7103).
Backwards incompatible API changes#
Breaking changes#
API changes related to Categorical (see here
for more details):
- The - Categoricalconstructor with two arguments changed from “codes/labels and levels” to “values and levels (now called ‘categories’)”. This can lead to subtle bugs. If you use- Categoricaldirectly, please audit your code by changing it to use the- from_codes()constructor.- An old function call like (prior to 0.15.0): - pd.Categorical([0,1,0,2,1], levels=['a', 'b', 'c']) - will have to adapted to the following to keep the same behaviour: - In [2]: pd.Categorical.from_codes([0,1,0,2,1], categories=['a', 'b', 'c']) Out[2]: [a, b, a, c, b] Categories (3, object): [a, b, c] 
API changes related to the introduction of the Timedelta scalar (see
above for more details):
- Prior to 0.15.0 - to_timedelta()would return a- Seriesfor list-like/Series input, and a- np.timedelta64for scalar input. It will now return a- TimedeltaIndexfor list-like input,- Seriesfor Series input, and- Timedeltafor scalar input.
For API changes related to the rolling and expanding functions, see detailed overview above.
Other notable API changes:
- Consistency when indexing with - .locand a list-like indexer when no values are found.- In [68]: df = pd.DataFrame([['a'], ['b']], index=[1, 2]) In [69]: df Out[69]: 0 1 a 2 b [2 rows x 1 columns] - In prior versions there was a difference in these two constructs: - df.loc[[3]]would return a frame reindexed by 3 (with all- np.nanvalues)
- df.loc[[3],:]would raise- KeyError.
 - Both will now raise a - KeyError. The rule is that at least 1 indexer must be found when using a list-like and- .loc(GH7999)- Furthermore in prior versions these were also different: - df.loc[[1,3]]would return a frame reindexed by [1,3]
- df.loc[[1,3],:]would raise- KeyError.
 - Both will now return a frame reindex by [1,3]. E.g. - In [3]: df.loc[[1, 3]] Out[3]: 0 1 a 3 NaN In [4]: df.loc[[1, 3], :] Out[4]: 0 1 a 3 NaN - This can also be seen in multi-axis indexing with a - Panel.- >>> p = pd.Panel(np.arange(2 * 3 * 4).reshape(2, 3, 4), ... items=['ItemA', 'ItemB'], ... major_axis=[1, 2, 3], ... minor_axis=['A', 'B', 'C', 'D']) >>> p <class 'pandas.core.panel.Panel'> Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis) Items axis: ItemA to ItemB Major_axis axis: 1 to 3 Minor_axis axis: A to D - The following would raise - KeyErrorprior to 0.15.0:- In [5]: Out[5]: ItemA ItemD 1 3 NaN 2 7 NaN 3 11 NaN - Furthermore, - .locwill raise If no values are found in a MultiIndex with a list-like indexer:- In [70]: s = pd.Series(np.arange(3, dtype='int64'), ....: index=pd.MultiIndex.from_product([['A'], ....: ['foo', 'bar', 'baz']], ....: names=['one', 'two']) ....: ).sort_index() ....: In [71]: s Out[71]: one two A bar 1 baz 2 foo 0 Length: 3, dtype: int64 In [72]: try: ....: s.loc[['D']] ....: except KeyError as e: ....: print("KeyError: " + str(e)) ....: KeyError: "['D'] not in index" 
- Assigning values to - Nonenow considers the dtype when choosing an ‘empty’ value (GH7941).- Previously, assigning to - Nonein numeric containers changed the dtype to object (or errored, depending on the call). It now uses- NaN:- In [73]: s = pd.Series([1, 2, 3]) In [74]: s.loc[0] = None In [75]: s Out[75]: 0 NaN 1 2.0 2 3.0 Length: 3, dtype: float64 - NaTis now used similarly for datetime containers.- For object containers, we now preserve - Nonevalues (previously these were converted to- NaNvalues).- In [76]: s = pd.Series(["a", "b", "c"]) In [77]: s.loc[0] = None In [78]: s Out[78]: 0 None 1 b 2 c Length: 3, dtype: object - To insert a - NaN, you must explicitly use- np.nan. See the docs.
- In prior versions, updating a pandas object inplace would not reflect in other python references to this object. (GH8511, GH5104) - In [79]: s = pd.Series([1, 2, 3]) In [80]: s2 = s In [81]: s += 1.5 - Behavior prior to v0.15.0 - # the original object In [5]: s Out[5]: 0 2.5 1 3.5 2 4.5 dtype: float64 # a reference to the original object In [7]: s2 Out[7]: 0 1 1 2 2 3 dtype: int64 - This is now the correct behavior - # the original object In [82]: s Out[82]: 0 2.5 1 3.5 2 4.5 Length: 3, dtype: float64 # a reference to the original object In [83]: s2 Out[83]: 0 2.5 1 3.5 2 4.5 Length: 3, dtype: float64 
- Made both the C-based and Python engines for - read_csvand- read_tableignore empty lines in input as well as white space-filled lines, as long as- sepis not white space. This is an API change that can be controlled by the keyword parameter- skip_blank_lines. See the docs (GH4466)
- A timeseries/index localized to UTC when inserted into a Series/DataFrame will preserve the UTC timezone and inserted as - objectdtype rather than being converted to a naive- datetime64[ns](GH8411).
- Bug in passing a - DatetimeIndexwith a timezone that was not being retained in DataFrame construction from a dict (GH7822)- In prior versions this would drop the timezone, now it retains the timezone, but gives a column of - objectdtype:- In [84]: i = pd.date_range('1/1/2011', periods=3, freq='10s', tz='US/Eastern') In [85]: i Out[85]: DatetimeIndex(['2011-01-01 00:00:00-05:00', '2011-01-01 00:00:10-05:00', '2011-01-01 00:00:20-05:00'], dtype='datetime64[ns, US/Eastern]', freq='10S') In [86]: df = pd.DataFrame({'a': i}) In [87]: df Out[87]: a 0 2011-01-01 00:00:00-05:00 1 2011-01-01 00:00:10-05:00 2 2011-01-01 00:00:20-05:00 [3 rows x 1 columns] In [88]: df.dtypes Out[88]: a datetime64[ns, US/Eastern] Length: 1, dtype: object - Previously this would have yielded a column of - datetime64dtype, but without timezone info.- The behaviour of assigning a column to an existing dataframe as - df['a'] = iremains unchanged (this already returned an- objectcolumn with a timezone).
- When passing multiple levels to - stack(), it will now raise a- ValueErrorwhen the levels aren’t all level names or all level numbers (GH7660). See Reshaping by stacking and unstacking.
- Raise a - ValueErrorin- df.to_hdfwith ‘fixed’ format, if- dfhas non-unique columns as the resulting file will be broken (GH7761)
- SettingWithCopyraise/warnings (according to the option- mode.chained_assignment) will now be issued when setting a value on a sliced mixed-dtype DataFrame using chained-assignment. (GH7845, GH7950)- In [1]: df = pd.DataFrame(np.arange(0, 9), columns=['count']) In [2]: df['group'] = 'b' In [3]: df.iloc[0:5]['group'] = 'a' /usr/local/bin/ipython:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy 
- merge,- DataFrame.merge, and- ordered_mergenow return the same type as the- leftargument (GH7737).
- Previously an enlargement with a mixed-dtype frame would act unlike - .appendwhich will preserve dtypes (related GH2578, GH8176):- In [89]: df = pd.DataFrame([[True, 1], [False, 2]], ....: columns=["female", "fitness"]) ....: In [90]: df Out[90]: female fitness 0 True 1 1 False 2 [2 rows x 2 columns] In [91]: df.dtypes Out[91]: female bool fitness int64 Length: 2, dtype: object # dtypes are now preserved In [92]: df.loc[2] = df.loc[1] In [93]: df Out[93]: female fitness 0 True 1 1 False 2 2 False 2 [3 rows x 2 columns] In [94]: df.dtypes Out[94]: female bool fitness int64 Length: 2, dtype: object 
- Series.to_csv()now returns a string when- path=None, matching the behaviour of- DataFrame.to_csv()(GH8215).
- read_hdfnow raises- IOErrorwhen a file that doesn’t exist is passed in. Previously, a new, empty file was created, and a- KeyErrorraised (GH7715).
- DataFrame.info()now ends its output with a newline character (GH8114)
- Concatenating no objects will now raise a - ValueErrorrather than a bare- Exception.
- Merge errors will now be sub-classes of - ValueErrorrather than raw- Exception(GH8501)
- DataFrame.plotand- Series.plotkeywords are now have consistent orders (GH8037)
Internal refactoring#
In 0.15.0 Index has internally been refactored to no longer sub-class ndarray
but instead subclass PandasObject, similarly to the rest of the pandas objects. This
change allows very easy sub-classing and creation of new index types. This should be
a transparent change with only very limited API implications (GH5080, GH7439, GH7796, GH8024, GH8367, GH7997, GH8522):
- you may need to unpickle pandas version < 0.15.0 pickles using - pd.read_picklerather than- pickle.load. See pickle docs
- when plotting with a - PeriodIndex, the matplotlib internal axes will now be arrays of- Periodrather than a- PeriodIndex(this is similar to how a- DatetimeIndexpasses arrays of- datetimesnow)
- MultiIndexes will now raise similarly to other pandas objects w.r.t. truth testing, see here (GH7897). 
- When plotting a DatetimeIndex directly with matplotlib’s - plotfunction, the axis labels will no longer be formatted as dates but as integers (the internal representation of a- datetime64). UPDATE This is fixed in 0.15.1, see here.
Deprecations#
- The attributes - Categorical- labelsand- levelsattributes are deprecated and renamed to- codesand- categories.
- The - outtypeargument to- pd.DataFrame.to_dicthas been deprecated in favor of- orient. (GH7840)
- The - convert_dummiesmethod has been deprecated in favor of- get_dummies(GH8140)
- The - infer_dstargument in- tz_localizewill be deprecated in favor of- ambiguousto allow for more flexibility in dealing with DST transitions. Replace- infer_dst=Truewith- ambiguous='infer'for the same behavior (GH7943). See the docs for more details.
- The top-level - pd.value_rangehas been deprecated and can be replaced by- .describe()(GH8481)
- The - Indexset operations- +and- -were deprecated in order to provide these for numeric type operations on certain index types.- +can be replaced by- .union()or- |, and- -by- .difference(). Further the method name- Index.diff()is deprecated and can be replaced by- Index.difference()(GH8226)- # + pd.Index(['a', 'b', 'c']) + pd.Index(['b', 'c', 'd']) # should be replaced by pd.Index(['a', 'b', 'c']).union(pd.Index(['b', 'c', 'd'])) - # - pd.Index(['a', 'b', 'c']) - pd.Index(['b', 'c', 'd']) # should be replaced by pd.Index(['a', 'b', 'c']).difference(pd.Index(['b', 'c', 'd'])) 
- The - infer_typesargument to- read_html()now has no effect and is deprecated (GH7762, GH7032).
Removal of prior version deprecations/changes#
- Remove - DataFrame.delevelmethod in favor of- DataFrame.reset_index
Enhancements#
Enhancements in the importing/exporting of Stata files:
- Added support for bool, uint8, uint16 and uint32 data types in - to_stata(GH7097, GH7365)
- Added conversion option when importing Stata files (GH8527) 
- DataFrame.to_stataand- StataWritercheck string length for compatibility with limitations imposed in dta files where fixed-width strings must contain 244 or fewer characters. Attempting to write Stata dta files with strings longer than 244 characters raises a- ValueError. (GH7858)
- read_stataand- StataReadercan import missing data information into a- DataFrameby setting the argument- convert_missingto- True. When using this options, missing values are returned as- StataMissingValueobjects and columns containing missing values have- objectdata type. (GH8045)
Enhancements in the plotting functions:
- Added - layoutkeyword to- DataFrame.plot. You can pass a tuple of- (rows, columns), one of which can be- -1to automatically infer (GH6667, GH8071).
- Allow to pass multiple axes to - DataFrame.plot,- histand- boxplot(GH5353, GH6970, GH7069)
- Added support for - c,- colormapand- colorbararguments for- DataFrame.plotwith- kind='scatter'(GH7780)
- Histogram from - DataFrame.plotwith- kind='hist'(GH7809), See the docs.
- Boxplot from - DataFrame.plotwith- kind='box'(GH7998), See the docs.
Other:
- read_csvnow has a keyword parameter- float_precisionwhich specifies which floating-point converter the C engine should use during parsing, see here (GH8002, GH8044)
- Added - searchsortedmethod to- Seriesobjects (GH7447)
- describe()on mixed-types DataFrames is more flexible. Type-based column filtering is now possible via the- include/- excludearguments. See the docs (GH8164).- In [95]: df = pd.DataFrame({'catA': ['foo', 'foo', 'bar'] * 8, ....: 'catB': ['a', 'b', 'c', 'd'] * 6, ....: 'numC': np.arange(24), ....: 'numD': np.arange(24.) + .5}) ....: In [96]: df.describe(include=["object"]) Out[96]: catA catB count 24 24 unique 2 4 top foo a freq 16 6 [4 rows x 2 columns] In [97]: df.describe(include=["number", "object"], exclude=["float"]) Out[97]: catA catB numC count 24 24 24.000000 unique 2 4 NaN top foo a NaN freq 16 6 NaN mean NaN NaN 11.500000 std NaN NaN 7.071068 min NaN NaN 0.000000 25% NaN NaN 5.750000 50% NaN NaN 11.500000 75% NaN NaN 17.250000 max NaN NaN 23.000000 [11 rows x 3 columns] - Requesting all columns is possible with the shorthand ‘all’ - In [98]: df.describe(include='all') Out[98]: catA catB numC numD count 24 24 24.000000 24.000000 unique 2 4 NaN NaN top foo a NaN NaN freq 16 6 NaN NaN mean NaN NaN 11.500000 12.000000 std NaN NaN 7.071068 7.071068 min NaN NaN 0.000000 0.500000 25% NaN NaN 5.750000 6.250000 50% NaN NaN 11.500000 12.000000 75% NaN NaN 17.250000 17.750000 max NaN NaN 23.000000 23.500000 [11 rows x 4 columns] - Without those arguments, - describewill behave as before, including only numerical columns or, if none are, only categorical columns. See also the docs
- Added - splitas an option to the- orientargument in- pd.DataFrame.to_dict. (GH7840)
- The - get_dummiesmethod can now be used on DataFrames. By default only categorical columns are encoded as 0’s and 1’s, while other columns are left untouched.- In [99]: df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'], ....: 'C': [1, 2, 3]}) ....: In [100]: pd.get_dummies(df) Out[100]: C A_a A_b B_b B_c 0 1 1 0 0 1 1 2 0 1 0 1 2 3 1 0 1 0 [3 rows x 5 columns] 
- PeriodIndexsupports- resolutionas the same as- DatetimeIndex(GH7708)
- pandas.tseries.holidayhas added support for additional holidays and ways to observe holidays (GH7070)
- pandas.tseries.holiday.Holidaynow supports a list of offsets in Python3 (GH7070)
- pandas.tseries.holiday.Holidaynow supports a days_of_week parameter (GH7070)
- GroupBy.nth()now supports selecting multiple nth values (GH7910)- In [101]: business_dates = pd.date_range(start='4/1/2014', end='6/30/2014', freq='B') In [102]: df = pd.DataFrame(1, index=business_dates, columns=['a', 'b']) # get the first, 4th, and last date index for each month In [103]: df.groupby([df.index.year, df.index.month]).nth([0, 3, -1]) Out[103]: a b 2014 4 1 1 4 1 1 4 1 1 5 1 1 5 1 1 5 1 1 6 1 1 6 1 1 6 1 1 [9 rows x 2 columns] 
- Periodand- PeriodIndexsupports addition/subtraction with- timedelta-likes (GH7966)- If - Periodfreq is- D,- H,- T,- S,- L,- U,- N,- Timedelta-like can be added if the result can have same freq. Otherwise, only the same- offsetscan be added.- In [104]: idx = pd.period_range('2014-07-01 09:00', periods=5, freq='H') In [105]: idx Out[105]: PeriodIndex(['2014-07-01 09:00', '2014-07-01 10:00', '2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00'], dtype='period[H]') In [106]: idx + pd.offsets.Hour(2) Out[106]: PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00', '2014-07-01 14:00', '2014-07-01 15:00'], dtype='period[H]') In [107]: idx + pd.Timedelta('120m') Out[107]: PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00', '2014-07-01 14:00', '2014-07-01 15:00'], dtype='period[H]') In [108]: idx = pd.period_range('2014-07', periods=5, freq='M') In [109]: idx Out[109]: PeriodIndex(['2014-07', '2014-08', '2014-09', '2014-10', '2014-11'], dtype='period[M]') In [110]: idx + pd.offsets.MonthEnd(3) Out[110]: PeriodIndex(['2014-10', '2014-11', '2014-12', '2015-01', '2015-02'], dtype='period[M]') 
- Added experimental compatibility with - openpyxlfor versions >= 2.0. The- DataFrame.to_excelmethod- enginekeyword now recognizes- openpyxl1and- openpyxl2which will explicitly require openpyxl v1 and v2 respectively, failing if the requested version is not available. The- openpyxlengine is a now a meta-engine that automatically uses whichever version of openpyxl is installed. (GH7177)
- DataFrame.fillnacan now accept a- DataFrameas a fill value (GH8377)
- Passing multiple levels to - stack()will now work when multiple level numbers are passed (GH7660). See Reshaping by stacking and unstacking.
- set_names(),- set_labels(), and- set_levels()methods now take an optional- levelkeyword argument to all modification of specific level(s) of a MultiIndex. Additionally- set_names()now accepts a scalar string value when operating on an- Indexor on a specific level of a- MultiIndex(GH7792)- In [111]: idx = pd.MultiIndex.from_product([['a'], range(3), list("pqr")], .....: names=['foo', 'bar', 'baz']) .....: In [112]: idx.set_names('qux', level=0) Out[112]: MultiIndex([('a', 0, 'p'), ('a', 0, 'q'), ('a', 0, 'r'), ('a', 1, 'p'), ('a', 1, 'q'), ('a', 1, 'r'), ('a', 2, 'p'), ('a', 2, 'q'), ('a', 2, 'r')], names=['qux', 'bar', 'baz']) In [113]: idx.set_names(['qux', 'corge'], level=[0, 1]) Out[113]: MultiIndex([('a', 0, 'p'), ('a', 0, 'q'), ('a', 0, 'r'), ('a', 1, 'p'), ('a', 1, 'q'), ('a', 1, 'r'), ('a', 2, 'p'), ('a', 2, 'q'), ('a', 2, 'r')], names=['qux', 'corge', 'baz']) In [114]: idx.set_levels(['a', 'b', 'c'], level='bar') Out[114]: MultiIndex([('a', 'a', 'p'), ('a', 'a', 'q'), ('a', 'a', 'r'), ('a', 'b', 'p'), ('a', 'b', 'q'), ('a', 'b', 'r'), ('a', 'c', 'p'), ('a', 'c', 'q'), ('a', 'c', 'r')], names=['foo', 'bar', 'baz']) In [115]: idx.set_levels([['a', 'b', 'c'], [1, 2, 3]], level=[1, 2]) Out[115]: MultiIndex([('a', 'a', 1), ('a', 'a', 2), ('a', 'a', 3), ('a', 'b', 1), ('a', 'b', 2), ('a', 'b', 3), ('a', 'c', 1), ('a', 'c', 2), ('a', 'c', 3)], names=['foo', 'bar', 'baz']) 
- Index.isinnow supports a- levelargument to specify which index level to use for membership tests (GH7892, GH7890)- In [1]: idx = pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c']]) In [2]: idx.values Out[2]: array([(0, 'a'), (0, 'b'), (0, 'c'), (1, 'a'), (1, 'b'), (1, 'c')], dtype=object) In [3]: idx.isin(['a', 'c', 'e'], level=1) Out[3]: array([ True, False, True, True, False, True], dtype=bool) 
- Indexnow supports- duplicatedand- drop_duplicates. (GH4060)- In [116]: idx = pd.Index([1, 2, 3, 4, 1, 2]) In [117]: idx Out[117]: Int64Index([1, 2, 3, 4, 1, 2], dtype='int64') In [118]: idx.duplicated() Out[118]: array([False, False, False, False, True, True]) In [119]: idx.drop_duplicates() Out[119]: Int64Index([1, 2, 3, 4], dtype='int64') 
- add - copy=Trueargument to- pd.concatto enable pass through of complete blocks (GH8252)
- Added support for numpy 1.8+ data types ( - bool_,- int_,- float_,- string_) for conversion to R dataframe (GH8400)
Performance#
- Performance improvements in - DatetimeIndex.__iter__to allow faster iteration (GH7683)
- Performance improvements in - Periodcreation (and- PeriodIndexsetitem) (GH5155)
- Improvements in Series.transform for significant performance gains (revised) (GH6496) 
- Performance improvements in - StataReaderwhen reading large files (GH8040, GH8073)
- Performance improvements in - StataWriterwhen writing large files (GH8079)
- Performance and memory usage improvements in multi-key - groupby(GH8128)
- Performance improvements in groupby - .aggand- .applywhere builtins max/min were not mapped to numpy/cythonized versions (GH7722)
- Performance improvement in writing to sql ( - to_sql) of up to 50% (GH8208).
- Performance benchmarking of groupby for large value of ngroups (GH6787) 
- Performance improvement in - CustomBusinessDay,- CustomBusinessMonth(GH8236)
- Performance improvement for - MultiIndex.valuesfor multi-level indexes containing datetimes (GH8543)
Bug fixes#
- Bug in pivot_table, when using margins and a dict aggfunc (GH8349) 
- Bug in - read_csvwhere- squeeze=Truewould return a view (GH8217)
- Bug in checking of table name in - read_sqlin certain cases (GH7826).
- Bug in - DataFrame.groupbywhere- Grouperdoes not recognize level when frequency is specified (GH7885)
- Bug in multiindexes dtypes getting mixed up when DataFrame is saved to SQL table (GH8021) 
- Bug in - Series0-division with a float and integer operand dtypes (GH7785)
- Bug in - Series.astype("unicode")not calling- unicodeon the values correctly (GH7758)
- Bug in - DataFrame.as_matrix()with mixed- datetime64[ns]and- timedelta64[ns]dtypes (GH7778)
- Bug in - HDFStore.select_column()not preserving UTC timezone info when selecting a- DatetimeIndex(GH7777)
- Bug in - to_datetimewhen- format='%Y%m%d'and- coerce=Trueare specified, where previously an object array was returned (rather than a coerced time-series with- NaT), (GH7930)
- Bug in - DatetimeIndexand- PeriodIndexin-place addition and subtraction cause different result from normal one (GH6527)
- Bug in adding and subtracting - PeriodIndexwith- PeriodIndexraise- TypeError(GH7741)
- Bug in - combine_firstwith- PeriodIndexdata raises- TypeError(GH3367)
- Bug in MultiIndex slicing with missing indexers (GH7866) 
- Bug in MultiIndex slicing with various edge cases (GH8132) 
- Regression in MultiIndex indexing with a non-scalar type object (GH7914) 
- Bug in - Timestampcomparisons with- ==and- int64dtype (GH8058)
- Bug in pickles contains - DateOffsetmay raise- AttributeErrorwhen- normalizeattribute is referred internally (GH7748)
- Bug in - Panelwhen using- major_xsand- copy=Falseis passed (deprecation warning fails because of missing- warnings) (GH8152).
- Bug in pickle deserialization that failed for pre-0.14.1 containers with dup items trying to avoid ambiguity when matching block and manager items, when there’s only one block there’s no ambiguity (GH7794) 
- Bug in putting a - PeriodIndexinto a- Serieswould convert to- int64dtype, rather than- objectof- Periods(GH7932)
- Bug in - HDFStoreiteration when passing a where (GH8014)
- Bug in - DataFrameGroupby.transformwhen transforming with a passed non-sorted key (GH8046, GH8430)
- Bug in repeated timeseries line and area plot may result in - ValueErroror incorrect kind (GH7733)
- Bug in inference in a - MultiIndexwith- datetime.dateinputs (GH7888)
- Bug in - getwhere an- IndexErrorwould not cause the default value to be returned (GH7725)
- Bug in - offsets.apply,- rollforwardand- rollbackmay reset nanosecond (GH7697)
- Bug in - offsets.apply,- rollforwardand- rollbackmay raise- AttributeErrorif- Timestamphas- dateutiltzinfo (GH7697)
- Bug in sorting a MultiIndex frame with a - Float64Index(GH8017)
- Bug in inconsistent panel setitem with a rhs of a - DataFramefor alignment (GH7763)
- Bug in - is_superperiodand- is_subperiodcannot handle higher frequencies than- S(GH7760, GH7772, GH7803)
- Bug in 32-bit platforms with - Series.shift(GH8129)
- Bug in - PeriodIndex.uniquereturns int64- np.ndarray(GH7540)
- Bug in - groupby.applywith a non-affecting mutation in the function (GH8467)
- Bug in - DataFrame.reset_indexwhich has- MultiIndexcontains- PeriodIndexor- DatetimeIndexwith tz raises- ValueError(GH7746, GH7793)
- Bug in - DataFrame.plotwith- subplots=Truemay draw unnecessary minor xticks and yticks (GH7801)
- Bug in - StataReaderwhich did not read variable labels in 117 files due to difference between Stata documentation and implementation (GH7816)
- Bug in - StataReaderwhere strings were always converted to 244 characters-fixed width irrespective of underlying string size (GH7858)
- Bug in - DataFrame.plotand- Series.plotmay ignore- rotand- fontsizekeywords (GH7844)
- Bug in - DatetimeIndex.value_countsdoesn’t preserve tz (GH7735)
- Bug in - PeriodIndex.value_countsresults in- Int64Index(GH7735)
- Bug in - DataFrame.joinwhen doing left join on index and there are multiple matches (GH5391)
- Bug in - GroupBy.transform()where int groups with a transform that didn’t preserve the index were incorrectly truncated (GH7972).
- Bug in - groupbywhere callable objects without name attributes would take the wrong path, and produce a- DataFrameinstead of a- Series(GH7929)
- Bug in - groupbyerror message when a DataFrame grouping column is duplicated (GH7511)
- Bug in - read_htmlwhere the- infer_typesargument forced coercion of date-likes incorrectly (GH7762, GH7032).
- Bug in - Series.str.catwith an index which was filtered as to not include the first item (GH7857)
- Bug in - Timestampcannot parse- nanosecondfrom string (GH7878)
- Bug in - Timestampwith string offset and- tzresults incorrect (GH7833)
- Bug in - tslib.tz_convertand- tslib.tz_convert_singlemay return different results (GH7798)
- Bug in - DatetimeIndex.intersectionof non-overlapping timestamps with tz raises- IndexError(GH7880)
- Bug in alignment with TimeOps and non-unique indexes (GH8363) 
- Bug in - GroupBy.filter()where fast path vs. slow path made the filter return a non scalar value that appeared valid but wasn’t (GH7870).
- Bug in - date_range()/- DatetimeIndex()when the timezone was inferred from input dates yet incorrect times were returned when crossing DST boundaries (GH7835, GH7901).
- Bug in - to_excel()where a negative sign was being prepended to positive infinity and was absent for negative infinity (GH7949)
- Bug in area plot draws legend with incorrect - alphawhen- stacked=True(GH8027)
- Periodand- PeriodIndexaddition/subtraction with- np.timedelta64results in incorrect internal representations (GH7740)
- Bug in - Holidaywith no offset or observance (GH7987)
- Bug in - DataFrame.to_latexformatting when columns or index is a- MultiIndex(GH7982).
- Bug in - DateOffsetaround Daylight Savings Time produces unexpected results (GH5175).
- Bug in - DataFrame.shiftwhere empty columns would throw- ZeroDivisionErroron numpy 1.7 (GH8019)
- Bug in installation where - html_encoding/*.htmlwasn’t installed and therefore some tests were not running correctly (GH7927).
- Bug in - read_htmlwhere- bytesobjects were not tested for in- _read(GH7927).
- Bug in - DataFrame.stack()when one of the column levels was a datelike (GH8039)
- Bug in broadcasting numpy scalars with - DataFrame(GH8116)
- Bug in - pivot_tableperformed with nameless- indexand- columnsraises- KeyError(GH8103)
- Bug in - DataFrame.plot(kind='scatter')draws points and errorbars with different colors when the color is specified by- ckeyword (GH8081)
- Bug in - Float64Indexwhere- iatand- atwere not testing and were failing (GH8092).
- Bug in - DataFrame.boxplot()where y-limits were not set correctly when producing multiple axes (GH7528, GH5517).
- Bug in - read_csvwhere line comments were not handled correctly given a custom line terminator or- delim_whitespace=True(GH8122).
- Bug in - read_htmlwhere empty tables caused a- StopIteration(GH7575)
- Bug in casting when setting a column in a same-dtype block (GH7704) 
- Bug in accessing groups from a - GroupBywhen the original grouper was a tuple (GH8121).
- Bug in - .atthat would accept integer indexers on a non-integer index and do fallback (GH7814)
- Bug with kde plot and NaNs (GH8182) 
- Bug in - GroupBy.countwith float32 data type were nan values were not excluded (GH8169).
- Bug with stacked barplots and NaNs (GH8175). 
- Bug in resample with non evenly divisible offsets (e.g. ‘7s’) (GH8371) 
- Bug in interpolation methods with the - limitkeyword when no values needed interpolating (GH7173).
- Bug where - col_spacewas ignored in- DataFrame.to_string()when- header=False(GH8230).
- Bug with - DatetimeIndex.asofincorrectly matching partial strings and returning the wrong date (GH8245).
- Bug in plotting methods modifying the global matplotlib rcParams (GH8242). 
- Bug in - DataFrame.__setitem__that caused errors when setting a dataframe column to a sparse array (GH8131)
- Bug where - Dataframe.boxplot()failed when entire column was empty (GH8181).
- Bug with messed variables in - radvizvisualization (GH8199).
- Bug in interpolation methods with the - limitkeyword when no values needed interpolating (GH7173).
- Bug where - col_spacewas ignored in- DataFrame.to_string()when- header=False(GH8230).
- Bug in - to_clipboardthat would clip long column data (GH8305)
- Bug in - DataFrameterminal display: Setting max_column/max_rows to zero did not trigger auto-resizing of dfs to fit terminal width/height (GH7180).
- Bug in OLS where running with “cluster” and “nw_lags” parameters did not work correctly, but also did not throw an error (GH5884). 
- Bug in - DataFrame.dropnathat interpreted non-existent columns in the subset argument as the ‘last column’ (GH8303)
- Bug in - Index.intersectionon non-monotonic non-unique indexes (GH8362).
- Bug in masked series assignment where mismatching types would break alignment (GH8387) 
- Bug in - NDFrame.equalsgives false negatives with dtype=object (GH8437)
- Bug in assignment with indexer where type diversity would break alignment (GH8258) 
- Bug in - NDFrame.locindexing when row/column names were lost when target was a list/ndarray (GH6552)
- Regression in - NDFrame.locindexing when rows/columns were converted to Float64Index if target was an empty list/ndarray (GH7774)
- Bug in - Seriesthat allows it to be indexed by a- DataFramewhich has unexpected results. Such indexing is no longer permitted (GH8444)
- Bug in item assignment of a - DataFramewith MultiIndex columns where right-hand-side columns were not aligned (GH7655)
- Suppress FutureWarning generated by NumPy when comparing object arrays containing NaN for equality (GH7065) 
- Bug in - DataFrame.eval()where the dtype of the- notoperator (- ~) was not correctly inferred as- bool.
Contributors#
A total of 80 people contributed patches to this release. People with a “+” by their names contributed a patch for the first time.
- Aaron Schumacher + 
- Adam Greenhall 
- Andy Hayden 
- Anthony O’Brien + 
- Artemy Kolchinsky + 
- Ben Schiller + 
- Benedikt Sauer 
- Benjamin Thyreau + 
- BorisVerk + 
- Chris Reynolds + 
- Chris Stoafer + 
- DSM 
- Dav Clark + 
- FragLegs + 
- German Gomez-Herrero + 
- Hsiaoming Yang + 
- Huan Li + 
- Hyungtae Kim + 
- Isaac Slavitt + 
- Jacob Schaer 
- Jacob Wasserman + 
- Jan Schulz 
- Jeff Reback 
- Jeff Tratner 
- Jesse Farnham + 
- Joe Bradish + 
- Joerg Rittinger + 
- John W. O’Brien 
- Joris Van den Bossche 
- Kevin Sheppard 
- Kyle Meyer 
- Max Chang + 
- Michael Mueller 
- Michael W Schatzow + 
- Mike Kelly 
- Mortada Mehyar 
- Nathan Sanders + 
- Nathan Typanski + 
- Paul Masurel + 
- Phillip Cloud 
- Pietro Battiston 
- RenzoBertocchi + 
- Ross Petchler + 
- Shahul Hameed + 
- Shashank Agarwal + 
- Stephan Hoyer 
- Tom Augspurger 
- TomAugspurger 
- Tony Lorenzo + 
- Wes Turner 
- Wilfred Hughes + 
- Yevgeniy Grechka + 
- Yoshiki Vázquez Baeza + 
- behzad nouri + 
- benjamin 
- bjonen + 
- dlovell + 
- dsm054 
- hunterowens + 
- immerrr 
- ischwabacher 
- jmorris0x0 + 
- jnmclarty + 
- jreback 
- klonuo + 
- lexual 
- mcjcode + 
- mtrbean + 
- onesandzeroes 
- rockg 
- seth-p 
- sinhrks 
- someben + 
- stahlous + 
- stas-sl + 
- thatneat + 
- tom-alcorn + 
- unknown 
- unutbu 
- zachcp +