pandas.Series.aggregate#
- Series.aggregate(func=None, axis=0, *args, **kwargs)[source]#
- Aggregate using one or more operations over the specified axis. - Parameters
- funcfunction, str, list or dict
- Function to use for aggregating the data. If a function, must either work when passed a Series or when passed to Series.apply. - Accepted combinations are: - function 
- string function name 
- list of functions and/or function names, e.g. - [np.sum, 'mean']
- dict of axis labels -> functions, function names or list of such. 
 
- axis{0 or ‘index’}
- Parameter needed for compatibility with DataFrame. 
- *args
- Positional arguments to pass to func. 
- **kwargs
- Keyword arguments to pass to func. 
 
- Returns
- scalar, Series or DataFrame
- The return can be: - scalar : when Series.agg is called with single function 
- Series : when DataFrame.agg is called with a single function 
- DataFrame : when DataFrame.agg is called with several functions 
 - Return scalar, Series or DataFrame. 
 
 - See also - Series.apply
- Invoke function on a Series. 
- Series.transform
- Transform function producing a Series with like indexes. 
 - Notes - agg is an alias for aggregate. Use the alias. - Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details. - A passed user-defined-function will be passed a Series for evaluation. - Examples - >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 - >>> s.agg('min') 1 - >>> s.agg(['min', 'max']) min 1 max 4 dtype: int64