pandas.Series.quantile#
- Series.quantile(q=0.5, interpolation='linear')[source]#
- Return value at the given quantile. - Parameters
- qfloat or array-like, default 0.5 (50% quantile)
- The quantile(s) to compute, which can lie in range: 0 <= q <= 1. 
- interpolation{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}
- This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j: - linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j. 
- lower: i. 
- higher: j. 
- nearest: i or j whichever is nearest. 
- midpoint: (i + j) / 2. 
 
 
- Returns
- float or Series
- If - qis an array, a Series will be returned where the index is- qand the values are the quantiles, otherwise a float will be returned.
 
 - See also - core.window.Rolling.quantile
- Calculate the rolling quantile. 
- numpy.percentile
- Returns the q-th percentile(s) of the array elements. 
 - Examples - >>> s = pd.Series([1, 2, 3, 4]) >>> s.quantile(.5) 2.5 >>> s.quantile([.25, .5, .75]) 0.25 1.75 0.50 2.50 0.75 3.25 dtype: float64