pandas.Series.prod#
- Series.prod(axis=None, skipna=True, level=None, numeric_only=None, min_count=0, **kwargs)[source]#
- Return the product of the values over the requested axis. - Parameters
- axis{index (0)}
- Axis for the function to be applied on. 
- skipnabool, default True
- Exclude NA/null values when computing the result. 
- levelint or level name, default None
- If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. 
- numeric_onlybool, default None
- Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. 
- min_countint, default 0
- The required number of valid values to perform the operation. If fewer than - min_countnon-NA values are present the result will be NA.
- **kwargs
- Additional keyword arguments to be passed to the function. 
 
- Returns
- scalar or Series (if level specified)
 
 - See also - Series.sum
- Return the sum. 
- Series.min
- Return the minimum. 
- Series.max
- Return the maximum. 
- Series.idxmin
- Return the index of the minimum. 
- Series.idxmax
- Return the index of the maximum. 
- DataFrame.sum
- Return the sum over the requested axis. 
- DataFrame.min
- Return the minimum over the requested axis. 
- DataFrame.max
- Return the maximum over the requested axis. 
- DataFrame.idxmin
- Return the index of the minimum over the requested axis. 
- DataFrame.idxmax
- Return the index of the maximum over the requested axis. 
 - Examples - By default, the product of an empty or all-NA Series is - 1- >>> pd.Series([], dtype="float64").prod() 1.0 - This can be controlled with the - min_countparameter- >>> pd.Series([], dtype="float64").prod(min_count=1) nan - Thanks to the - skipnaparameter,- min_counthandles all-NA and empty series identically.- >>> pd.Series([np.nan]).prod() 1.0 - >>> pd.Series([np.nan]).prod(min_count=1) nan