pandas.Series.map#
- Series.map(arg, na_action=None)[source]#
- Map values of Series according to an input mapping or function. - Used for substituting each value in a Series with another value, that may be derived from a function, a - dictor a- Series.- Parameters
- argfunction, collections.abc.Mapping subclass or Series
- Mapping correspondence. 
- na_action{None, ‘ignore’}, default None
- If ‘ignore’, propagate NaN values, without passing them to the mapping correspondence. 
 
- Returns
- Series
- Same index as caller. 
 
 - See also - Series.apply
- For applying more complex functions on a Series. 
- DataFrame.apply
- Apply a function row-/column-wise. 
- DataFrame.applymap
- Apply a function elementwise on a whole DataFrame. 
 - Notes - When - argis a dictionary, values in Series that are not in the dictionary (as keys) are converted to- NaN. However, if the dictionary is a- dictsubclass that defines- __missing__(i.e. provides a method for default values), then this default is used rather than- NaN.- Examples - >>> s = pd.Series(['cat', 'dog', np.nan, 'rabbit']) >>> s 0 cat 1 dog 2 NaN 3 rabbit dtype: object - mapaccepts a- dictor a- Series. Values that are not found in the- dictare converted to- NaN, unless the dict has a default value (e.g.- defaultdict):- >>> s.map({'cat': 'kitten', 'dog': 'puppy'}) 0 kitten 1 puppy 2 NaN 3 NaN dtype: object - It also accepts a function: - >>> s.map('I am a {}'.format) 0 I am a cat 1 I am a dog 2 I am a nan 3 I am a rabbit dtype: object - To avoid applying the function to missing values (and keep them as - NaN)- na_action='ignore'can be used:- >>> s.map('I am a {}'.format, na_action='ignore') 0 I am a cat 1 I am a dog 2 NaN 3 I am a rabbit dtype: object